• Title/Summary/Keyword: 3D workspace

Search Result 63, Processing Time 0.196 seconds

Multiple Vision Based Micromanipulation System for 3D-Shaped Micro Parts Assembly

  • Lee, Seok-Joo;Park, Gwi-Tae;Kim, Kyunghwan;Kim, Deok-Ho;Park, Jong-Oh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.103.5-103
    • /
    • 2001
  • This paper presents a visual feedback system that controls a micromanipulator using multiple microscopic vision information. The micromanipulation stations basically have optical microscope. However the single field-of-view of optical microscope essentially limits the workspace of the micromanipulator and low dept-of-field makes it difficult to handle 3D-shaped micro objects. The system consists of a stereoscopic microscope, three CCD cameras, the micromanipulator and personal computer. The use of stereoscopic microscope which has long working distance and high depth-of-field with selective field-of-view improves the recognizability of 3D-shaped micro objects and provides a method for overcoming several essential limitations in micromanipulation. Thus, visual feedback information is very important in handling micro objects for overcoming those limitations and provides a mean for the ...

  • PDF

Visual Tracking of Moving Target Using Mobile Robot with One Camera (하나의 카메라를 이용한 이동로봇의 이동물체 추적기법)

  • 한영준;한헌수
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.12
    • /
    • pp.1033-1041
    • /
    • 2003
  • A new visual tracking scheme is proposed for a mobile robot that tracks a moving object in 3D space in real time. Visual tracking is to control a mobile robot to keep a moving target at the center of input image at all time. We made it possible by simplifying the relationship between the 2D image frame captured by a single camera and the 3D workspace frame. To precisely calculate the input vector (orientation and distance) of the mobile robot, the speed vector of the target is determined by eliminating the speed component caused by the camera motion from the speed vector appeared in the input image. The problem of temporary disappearance of the target form the input image is solved by selecting the searching area based on the linear prediction of target motion. The experimental results have shown that the proposed scheme can make a mobile robot successfully follow a moving target in real time.

Visualization and Workspace Analysis of Manipulator using the Input Device in Virtual Environment (가상 환경에서 입력장치를 이용한 매니퓰레이터의 작업영역 분석 및 시각화)

  • Kim Sung Hyun;Song Tae Gil;Yoon Ji Sup;Lee Geuk
    • Journal of Digital Contents Society
    • /
    • v.5 no.1
    • /
    • pp.22-27
    • /
    • 2004
  • To handle the high level radioactive materials such a spent fuel, the master-slave manipulaters (MSM) are wide1y used as a remote handling device in nuclear facilities such as the hot cell with sealed and shielded space. In this paper, the Digital Mockup which simulates the remote operation of the Advanced Conditioning Process(ACP) is developed. Also, the workspace and the motion of the slave manipulator, as well as, the remote operation task should be analyzed. The process equipment of ACP and Maintenance/Handling Device are drawn in 3D CAD model using IGRIP. Modeling device of manipulator is assigned with various mobile attributes such as a relative position, kinematics constraints, and a range of mobility. The 3D graphic simulator using the extermal input device of spare ball displays the movement of manipulator. To connect the exterral input device to the graphic simulator, the interface program of external input device with 6 DOF is deigned using the Low Level Tele-operation Interface(LLTI). The experimental result show that the developed simulation system gives much-improved human interface characteristics and shows satisfactory reponse characteristics in terms of synchronization speed. This should be useful for the development of work`s education system in the environment.

  • PDF

Z-Clutching: Interaction Technique for Navigating 3D Virtual Environment Using a Generic Haptic Device

  • Song, Deok-Jae;Kim, Seokyeol;Park, Jinah
    • Journal of Computing Science and Engineering
    • /
    • v.10 no.1
    • /
    • pp.32-38
    • /
    • 2016
  • Navigating a large 3D virtual environment using a generic haptic device can be challenging since the haptic device is usually bounded by its own physical workspace. On the other hand, mouse interaction easily handles the situation with a clutching mechanism-simply lifting the mouse and repositioning its location in the physical space. Since the haptic device is used for both input and output at the same time, in many cases, its freedom needs to be limited in order to accommodate such a situation. In this paper, we propose a new mechanism called Z-Clutching for 3D navigation of a virtual environment by using only the haptic device without any interruption or sacrifice in the given degrees of freedom of the device's handle. We define the clutching state which is set by pulling the haptic handle back into space. It acts similarly to lifting the mouse off the desk. In this way, the user naturally feels the haptic feedback based on the depth (z-direction), while manipulating the haptic device and moving the view as desired. We conducted a user study to evaluate the proposed interaction technique, and the results are promising in terms of the usefulness of the proposed mechanism.

Hybrid Position/Force Control of a 3-D Rehabilitation Robot System for Upper Extremities (상지 재활을 위한 3-D 로봇 시스템의 혼합 위치/힘 제어)

  • Lee, Soo-Han;Shin, Kyu-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.599-605
    • /
    • 2011
  • A 3-D rehabilitation robot system is developed. The robot system is for the rehabilitation of upper extremities, especially the shoulder and elbow joints, and has 3-D workspace for occupational therapy to recover physical functions in activities of daily living(ADL). The rehabilitation robot system has 1 DOF in horizontal rotational motion and 2 DOF in vertical rotational motion, where all actuators are set on the ground. Parallelogram linkage mechanisms lower the equivalent inertia of the control elements as well as control forces. Also the mechanisms have high mechanical rigidity for the end effector and the handle. In this paper, a hybrid position/force controller is used for controlling positions and forces simultaneously The controller is tuned according to the robot posture. The active motion modes for rehabilitation program consist of active-resisted motion mode and active-free motion mode. The results of the experiments show that the proposed motion modes provide the intended forces effectively.

Balance Control of a Biped Robot Using the ZMP State Prediction of the Kalman Estimator (칼만예측기의 ZMP 상태추정을 통한 이족로봇의 균형제어기법)

  • Park, Sang-Bum;Han, Young-Jun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.5
    • /
    • pp.601-607
    • /
    • 2006
  • This paper proposes a novel balance control scheme of a biped robot to predict the next position of ZMP using Kalman Filter. The mathematical model of the biped robot is generally approximated by 3D-LIPM(3D-Linear Inverted Pendulum Mode), but it cannot completely express the robot's dynamics. The stability of the biped robot depends on whether the ZMP(Zero Moment Point) position is in the stability region or out of. And the internal error between the robot mechanism and its model could affect the stability of a robot. Therefore, the proposed balance control not reduces the internal error, but also timely generates the proper control. The experiment of the proposed balance control is simulated on the virtual workspace where the biped robot may encounter with various difficulties.

3D Spatial Information Acquisition for Construction Operation and Maintenance on a Construction Site (효율적인 건설공사와 유지관리를 위한 건설현장에서의 3차원 공간 정보 획득)

  • Kim, Chang-Wan
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2004.11a
    • /
    • pp.188-193
    • /
    • 2004
  • 3D spatial-modeling can be used in various safety-enhancement applications and for as-built data acquisition in project-control systems. The objective of the research reported herein was to provide spatial-modeling methods that represent construction sites in an efficient manner and to validate the proposed methods by testing them in an actual construction environment. Algorithms to construct construction-site scenes and to carry out coordinate transformations in order to merge data from different acquisition locations are presented. Field experiments were conducted to establish performance parameters and validation for the proposed methods and models. Initial experimental work has demonstrated the feasibility of this approach.

  • PDF

Development of the Maintenance Process Using Virtual Prototyping for the Equipment in the MSM's Unreachable Area of the Hot cell

  • Lee, Jong-Youl;Song, Tai-Gil;Kim, Sung-Hyun;Yoon, Ji-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1354-1358
    • /
    • 2003
  • The process equipment for handling high level radioactive materials like spent fuels is operated in a hot cell, due to high radioactivity. Thus, this equipment should be maintained and repaired optimally by a remotely operated manipulator. The master-slave manipulators(MSM) are widely used as a remote handling device in the hot cell. The equipment in the hot cell should be optimally placed within the workspace of the wall-mounted slave manipulator for the maintenance operation. But, because of the complexity in the hot cell, there would be some parts of the equipment that are not reached by the MSM. In this study, the maintenance process for these parts of the equipment is developed using virtual prototyping technology. To analyze the workspace of the maintenance device in the hot cell and to develop the maintenance processes for the process equipment, the virtual mock-up of the hot cell for the spent fuel handling process is implemented using IGRIP. For the implementation of the virtual mock-up, the parts of the equipment and maintenance devices such as the MSM and servo manipulator are modeled and assembled in 3-D graphics, and the appropriate kinematics are assigned. Also, the virtual workcell of the spent fuel management process is implemented in the graphical environment, which is the same as the real environment. Using this mock-up, the workspace of the manipulators in the hot cell and the operator's view through the wall-mounted lead glass are analyzed. Also, for the dedicated maintenance operation, the analyses for the detailed area of the end effectors in accordance with the slave manipulator's position and orientation are carried out. The parts of the equipment that are located outside of the MSM's workspace are specified and the maintenance process of the parts using the servo manipulator that is mounted in the hot cell is proposed. To monitor the process in the hot cell remotely, the virtual display system by a virtual camera in the virtual work cell is also proposed. And the graphic simulation using a virtual mock-up is performed to verify the proposed maintenance process. The maintenance process proposed in this study can be effectively used in the real hot cell operation and the implemented virtual mock-up can be used for analyzing the various hot cell operations and enhancing the reliability and safety of the spent fuel management.

  • PDF

Preliminary numerical analysis of controllable prestressed wale system for deep excavation

  • Lee, Chang Il;Kim, Eun Kyum;Park, Jong Sik;Lee, Yong-Joo
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1061-1070
    • /
    • 2018
  • The main purpose of retaining wall methods for deep excavation is to keep the construction site safe from the earth pressure acting on the backfill during the construction period. Currently used retaining wall methods include the common strut method, anchor method, slurry wall method, and raker method. However, these methods have drawbacks such as reduced workspace and intrusion into private property, and thus, efforts are being made to improve them. The most advanced retaining wall method is the prestressed wale system, so far, in which a load corresponding to the earth pressure is applied to the wale by using the tension of a prestressed (PS) strand wire. This system affords advantages such as providing sufficient workspace by lengthening the strut interval and minimizing intrusion into private properties adjacent to the site. However, this system cannot control the tension of the PS strand wire, and thus, it cannot actively cope with changes in the earth pressure due to excavation. This study conducts a preliminary numerical analysis of the field applicability of the controllable prestressed wale system (CPWS) which can adjust the tension of the PS strand wire. For the analysis, back analysis was conducted through two-dimensional (2D) and three-dimensional (3D) numerical analyses based on the field measurement data of the typical strut method, and then, the field applicability of CPWS was examined by comparing the lateral deflection of the wall and adjacent ground surface settlements under the same conditions. In addition, the displacement and settlement of the wall were predicted through numerical analysis while the prestress force of CPWS was varied, and the structural stability was analysed through load tests on model specimens.

Recognition and Modeling of 3D Environment based on Local Invariant Features (지역적 불변특징 기반의 3차원 환경인식 및 모델링)

  • Jang, Dae-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.3
    • /
    • pp.31-39
    • /
    • 2006
  • This paper presents a novel approach to real-time recognition of 3D environment and objects for various applications such as intelligent robots, intelligent vehicles, intelligent buildings,..etc. First, we establish the three fundamental principles that humans use for recognizing and interacting with the environment. These principles have led to the development of an integrated approach to real-time 3D recognition and modeling, as follows: 1) It starts with a rapid but approximate characterization of the geometric configuration of workspace by identifying global plane features. 2) It quickly recognizes known objects in environment and replaces them by their models in database based on 3D registration. 3) It models the geometric details the geometric details on the fly adaptively to the need of the given task based on a multi-resolution octree representation. SIFT features with their 3D position data, referred to here as stereo-sis SIFT, are used extensively, together with point clouds, for fast extraction of global plane features, for fast recognition of objects, for fast registration of scenes, as well as for overcoming incomplete and noisy nature of point clouds.

  • PDF