• Title/Summary/Keyword: 3D velocity model

Search Result 510, Processing Time 0.03 seconds

쌍끌이 중층트롤어법의 연구 ( 2 ) - 모형어구의 깊이에 관하여 - ( A Study on the Pair Midwater Trawling ( 2 ) - Working Depth of the Model Net - )

  • 이병기
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.1
    • /
    • pp.45-53
    • /
    • 1995
  • Working depth of the model net was determined by using of the same experimental tank and the same model net that used in the forwarded report in a series studies. The depth of the net which indicates the depth of the head rope from the water surface, was determined by the photographs taken in front of the net mouth with the combination of towing velocity, warp length and distance between paired boats. The results obtained can be summarized as follows: 1. Working depth of model nets A and B was varied in the range of 0.09~1.66$m$,and 0.04~1.34$m$(which can be converted into 2.7~40.2$m$and 1.2~49.8$m$in the full-scale net) respectively, and the depth of model net A was slightly deeper than the depth of the model net B. 2. Working depth ($D$,which is appendixed m for the model net, f for the full-scale net, A and B for the types of the model nets) can be expressed as the function of towing velocity$V_t$, as in the model net($V_t$=$m$/$sec$) $D_{mA}$=(-1.99+0.65$L_w$) $e^{-1.72V_t}$ $D_{mA]$=(-1.91+1.04 $L_w$) $e^{2.88V_t}$ in the full-scale net($V_t$=$k$'$t$ $D_{fA}$=(-29.32+0.65$L_w$)$e^{0.40 V_t}$ $D_{fB}$=(-57.60+1.04$L_w$)$e^{-0.67 V_t}$ 3. Working depth 9$D$ appendixes are as same as the former) can be expressed as the function of warp length$L_w$) in the model net, and can be converted into full-scale net as in the model net ($V_t$=$m$/$sec$) $D_{mA}$=-0.99 $e^{-1.42V_t}$+0.67$e^{-1359V_t}$$L_w$ $D_{mB}$=-.258$e^{-3.77V_t}$+1.16$e^{-3.15V_t$ $L^w$, in the full-scale net($V_t$=k't) $D_{fA}$=-29.28$e^{-0.32V_t}$+0.67$e^{-0.37V_t$$L_w$ $D_{fB}$=-69.10$e^{-0.81V_t}$+1.16$e^{-0.72V_t}$$L_w$. 4. Working depth was gradually shallowed according to the increase of the distance between paired boats.

  • PDF

A Study on the Unsteady Flow Characteristics of a Delta Wing by 3-D Stereo PIV (3-D Stereo PIV에 의한 비정상 델타윙 유동특성에 대한 연구)

  • Kim, Beom-Seok;Lee, Hyun;Kim, Jeong-Hwan;Lee, Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1672-1677
    • /
    • 2004
  • Leading edge extension(LEX) in a highly swept shape applied to a delta wing features the modem air-fighters. The LEX vortices generated upon the upper surface of the wing at high angle of attack enhance the lift force of the delta wing by way of increased negative suction pressure over the surfaces. The present 3-D stereo PIV includes the Identification of 2-D cross-correlation equation, stereo matching of 2-D velocity vectors of two cameras, accurate calculation of 3-D velocity vectors by homogeneous coordinate system, removal of error vectors by a statistical method followed by a continuity equation criterion and so on. A delta wing model with or without LEX was immersed in a circulating water channel. Two high-resolution, high-speed digital cameras($1280pixel{\times}1024pixel$) were used to allow the time-resolved animation work. The present dynamic stereo PIV represents the complicated vortex behavior, especially, in terms of time-dependent characteristics of the vortices at given measuring sections. Quantities such as three velocity vector components, vorticity and other flow information can be easily visualized via the 3D time-resolved post-processing to make the easy understanding of the LEX effect or vortex emerging and collapse which are important phenomena occurring in the field of delta wing aerodynamics.

  • PDF

Crustal structure beneath broadband seismic station using receiver function (2) (수신함수를 이용한 관측소 하부의 지진파 속도구조 (2))

  • 박윤경;전정수;김성균
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.3-7
    • /
    • 2003
  • The velocity structure beneath the CHNB broadband station is determined by receiver function analysis using by from teleseismic P waveforms. The detailed broadband receiver functions are obtained by stacking method for source-equalized vertical, radial and tangential components of teleseismic P waveforms. A time domain inversion uses the stacked radial receiver function to determine vertical P wave velocity structure beneath the station. The crustal velocity structures beneath the stations are estimated using the receiver function inversion method in the case at the crustal model parameterized by many thin, flat-lying, homogeneous layers. Events divide into 4 groups. four azimuths corresponding to events in group a(southwest), b(south), c(southeast), d(northeast). The result of crust at model inversion shows the crustal velocity structure beneath the CHNB station varies smoothly with increasing depth. The conard discontinuity lies around 18 km and moho discontinuity lies range from 30 to 34 km.

  • PDF

GOTHIC-3D APPLICABILITY TO HYDROGEN COMBUSTION ANALYSIS

  • LEE JUNG-JAE;LEE JIN-YONG;PARK GOON-CHERL;LEE BYUNG-CHUL;YOO HOJONG;KIM HYEONG-TAEK;OH SEUNG-JONG
    • Nuclear Engineering and Technology
    • /
    • v.37 no.3
    • /
    • pp.265-272
    • /
    • 2005
  • Severe accidents in nuclear power plants can cause hydrogen-generating chemical reactions, which create the danger of hydrogen combustion and thus threaten containment integrity. For containment analyses, a three-dimensional mechanistic code, GOTHIC-3D has been applied near source compartments to predict whether or not highly reactive gas mixtures can form during an accident with the hydrogen mitigation system working. To assess the code applicability to hydrogen combustion analysis, this paper presents the numerical calculation results of GOTHIC-3D for various hydrogen combustion experiments, including FLAME, LSVCTF, and SNU-2D. In this study, a technical base for the modeling oflarge- and small-scale facilities was introduced through sensitivity studies on cell size and bum modeling parameters. Use of a turbulent bum option of the eddy dissipation concept enabled scale-free applications. Lowering the bum parameter values for the flame thickness and the bum temperature limit resulted in a larger flame velocity. When applied to hydrogen combustion analysis, this study revealed that the GOTHIC-3D code is generally able to predict the combustion phenomena with its default bum modeling parameters for large-scale facilities. However, the code needs further modifications of its bum modeling parameters to be applied to either small-scale facilities or extremely fast transients.

MEASUREMENT OF FLOW DISTRIBUTION IN A STRAIGHT DUCT OF RAILWAY TUNNEL MOCK-UP USING PIV AND COMPARISON WITH NUMERICAL SIMULATION (PIV 기법을 이용한 모형철도터널 직관덕트에서 유동 분포 계측 및 수치해석 결과와의 비교분석)

  • Jang, Y.J.;Jung, W.S.;Park, I.S.
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.39-45
    • /
    • 2010
  • The turbulent flows in a tunnel mock-up($10L{\times}0.5W{\times}0.25H$ m3 : scale reduction 1/20) with rectangular cross section were investigated. The instantaneous velocity fields of Re = 49,029, 89,571 were measured by the 2-D PIV system which is consisted of double pulsed Nd:Yag laser and the tracer particles in the straight-duct mock-up where the flows were fully developed. The mean velocity profiles were taken from the ensemble averages of 1,000 instantaneous velocity fields. Simultaneously, numerical simulations(RANS) were performed to compare with experimental data using STREAM code. Non-linear eddy viscosity model (NLEVM : Abe-Jang-Leschziner Eddy Viscosity Model) was employed to resolve the turbulent flows in the duct. The calculated mean velocity profiles were well compared with PIV results. In the log-law profiles, the experimental data were in good agreement with numerical simulations all the way to the wake region except the viscous sub-layer (near wall region).

Combustion Modeling for Stratified Charge (성층화 혼합기의 연소 모델링)

  • 김용태;배상수;민경덕
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.50-55
    • /
    • 2001
  • To simulate the combustion process under stratified charged conditions, like GDI engines, the new combustion model is proposed, which is based on Welter's FAE model and Peters' PDF model for considering primary reactions. In addition to these models, the new laminar burning velocity correlation and diffusion flame model are also included in the proposed model. The former can be applicable to much wider range of equivalence ratio, pressure and temperature than the others, such as Keck's and Guilder's models, and the latter has been derived from water-gas shift reaction and hydrogen oxidation, by which the secondary reactions can be considered after primary reactions. 3-D computation has been performed by using STAR-CD v3.05 in the simple cylindrical geometry under stratified charged condition. Judging from the calculated results, the present model proves to be reasonable to simulate the characteristics of flame propagation and concentrations of products in burned regions.

  • PDF

The dynamic response of a prototype steel floor using velocity-source type of excitation

  • Magalhaes, Max D.C.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.3
    • /
    • pp.371-385
    • /
    • 2013
  • Vibration isolators and anti-vibration mounts are ideal, for example, in creating floating floors for gymnasiums, or performance spaces. However, it is well-known that there are great difficulties on isolating vibration transmission in structural steel components, especially steel floors. Besides, the selection of inertia blocks, which are usually used by engineers as an effective vibration control measure, is usually based on crude methods or the experience of the engineers. Thus, no simple method or indices have been available for assessing the effect of inertia blocks on vibration isolation or stability of vibratory systems. Thus, the aims of this research are to provide further background description using a FE model and present and implement a modal approach, that was validated experimentally, the latter assisting in providing improved understanding of the vibration transmission phenomenon in steel buildings excited by a velocity-source type of excitation. A better visualization of the mean-square velocity distribution in the frequency domain is presented using the concept of modal expansion. Finally, the variation of the mean-square velocity with frequency, whilst varying mass and/or stiffness of the coupled system, is presented.

Characteristic Study of Tire Hydroplaning Phenomenon to Vehicle Velocity (차량 속도에 따른 타이어 수막현상의 특성 연구)

  • Son Jeong-Sam;Lee Hong-Woo;Cho Jin-Rae;Woo Jong-Shik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.10 s.241
    • /
    • pp.1307-1314
    • /
    • 2005
  • The most important factor of the traffic accident on the wet road is a tire slip caused by hydroplaning. Meanwhile, hydroplaning characteristics are influenced very greatly by the vehicle velocity, so it is very important to reveal the relation between hydroplaning and the vehicle velocity. Since the experiment study is considerably limited, recently the numerical simulation using finite element method(FEM) and finite volume method(FVM) is widely adopted. In this paper, the effect of the vehicle velocity on the hydroplaning characteristics is investigated through the hydroplaning analysis using MSC/Dytran.

Development of Dome-Type Cold Storage Facility Using 3-D CFD Simulation (3차원 CFD 시뮬레이션을 이용한 돔형 저온저장고 개발)

  • 양길모;고학균;홍지향
    • Journal of Biosystems Engineering
    • /
    • v.28 no.1
    • /
    • pp.35-44
    • /
    • 2003
  • This study was conducted to develop proper model for cold storage facility that could of for uniform heat movement and air movement f3r green grocery and improve improper design of the existing container-type cold storage facility. For that reason, new model(dome-type) cold storage facility was developed using 3-D CFD(computational fluid dynamics) simulation. The size was 6m${\times}$6m${\times}$5m. Its size and configuration were same to simulation model. Unit cooler was designed to send cold air in 4 side ways. A dome-type cold storage facility showed uniform distributions of air temperature and velocity because cold air was forced to move down along the ceiling and the wall and then circulated to the unit cooler from the central part of the floor. Dome-type cold storage facility also showed by low wind velocity, below 1 m/s that could minimized cold damage and quality deterioration.

Simulation of Low Velocity Impact of Honeycomb Sandwich Composite Panels for the BIMODAL Tram Application (바이모달 트램 적용 하니컴 샌드위치 복합재 패널의 저속 충격 해석)

  • Lee, Jae-Youl;Jeong, Jong-Cheol;Shin, Kwang-Bok
    • Composites Research
    • /
    • v.20 no.4
    • /
    • pp.42-50
    • /
    • 2007
  • This paper describes the results of experiments and numerical simulation studies on the low-velocity impact damage of two different sandwich composite panels for application to bodyshell and floor structure of the BIMODAL tram vehicle. Square test samples of 100mm sides were subjected to low-velocity impact loading using an instrumented testing machine at four impact energy levels. Part of this work presented is focused on the finite element analysis of low-velocity impact response onto a sandwich composite panels. It is based on the application of explicit finite element (FE) analysis codes LS-DYNA 3D to study the impact response of sandwich structures under low-velocity impact conditions. Material testing was conducted to determine the input parameters for the metallic and composite material model, and the effective equivalent damage model for the orthotropic honeycomb materials. Numerical and experimental results showed a good agreement for damage area and the depth of indentation of sandwich composite panels created by the impact loading.