• Title/Summary/Keyword: 3D spatial data

Search Result 847, Processing Time 0.025 seconds

2D Interpolation of 3D Points using Video-based Point Cloud Compression (비디오 기반 포인트 클라우드 압축을 사용한 3차원 포인트의 2차원 보간 방안)

  • Hwang, Yonghae;Kim, Junsik;Kim, Kyuheon
    • Journal of Broadcast Engineering
    • /
    • v.26 no.6
    • /
    • pp.692-703
    • /
    • 2021
  • Recently, with the development of computer graphics technology, research on technology for expressing real objects as more realistic virtual graphics is being actively conducted. Point cloud is a technology that uses numerous points, including 2D spatial coordinates and color information, to represent 3D objects, and they require huge data storage and high-performance computing devices to provide various services. Video-based Point Cloud Compression (V-PCC) technology is currently being studied by the international standard organization MPEG, which is a projection based method that projects point cloud into 2D plane, and then compresses them using 2D video codecs. V-PCC technology compresses point cloud objects using 2D images such as Occupancy map, Geometry image, Attribute image, and other auxiliary information that includes the relationship between 2D plane and 3D space. When increasing the density of point cloud or expanding an object, 3D calculation is generally used, but there are limitations in that the calculation method is complicated, requires a lot of time, and it is difficult to determine the correct location of a new point. This paper proposes a method to generate additional points at more accurate locations with less computation by applying 2D interpolation to the image on which the point cloud is projected, in the V-PCC technology.

Bamboo Distribution Map for Planning the Development of Tourism Potential in Boon Pring Andeman Area

  • Farah, Devy Atika;Dharmawan, Agus;Novianti, Vivi
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.2 no.3
    • /
    • pp.144-152
    • /
    • 2021
  • Sanankerto is one of pilot projects for tourism villages in Indonesia due to its natural tourism potential with a 24-ha bamboo forest located in Boon Pring Andeman area. However, the distribution of existing bamboo has never been identified or mapped. Thus, the mana gement is facing difficulty in planning and developing tourism potential as well as spatial management in the area. Therefore, the objectives of this study were to identify and analyze the structure of bamboo vegetation in the Boon Pring Tourism village an d to perform vegetation mapping. The type of research was descriptive exploratory with a cluster sampling technique (i.e., a two-stage cluster) covering an area of ± 10 ha. Bamboo vegetation analysis was performed by calculating diversity index (H'), evenness index (E), and Species Richness index (R). Data were collected through observation and interviews with local people and the manager to determine zonation division. Mapping of bamboo vegetation based on zoning was processed into thematic maps using ArcG is 10.3. Micro climatic factors were measured with three replications for each sub -cluster. Data were analyzed descriptively and quantitatively. Nine species of bamboo identified. Diversity, evenness, and species richness indices differed at each location. Activities of local communities, tourists, and manager determined the presence, number, and distribution of bamboo species. These bamboo distribution maps in three zoning (utilization, buffer, and core) can be used by manager for planning and developing natural tourism potential.

Wind Data Simulation Using Digital Generation of Non-Gaussian Turbulence Multiple Time Series with Specified Sample Cross Correlations (임의의 표본상호상관함수와 비정규확률분포를 갖는 다중 난류시계열의 디지털 합성방법을 이용한 풍속데이터 시뮬레이션)

  • Seong, Seung-Hak;Kim, Wook;Kim, Kyung-Chun;Boo, Jung-Sook
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.5
    • /
    • pp.569-581
    • /
    • 2003
  • A method of synthetic time series generation was developed and applied to the simulation of homogeneous turbulence in a periodic 3 - D box and the hourly wind data simulation. The method can simulate almost exact sample auto and cross correlations of multiple time series and control non-Gaussian distribution. Using the turbulence simulation, influence of correlations, non-Gaussian distribution, and one-direction anisotropy on homogeneous structure were studied by investigating the spatial distribution of turbulence kinetic energy and enstrophy. An hourly wind data of Typhoon Robin was used to illustrate a capability of the method to simulate sample cross correlations of multiple time series. The simulated typhoon data shows a similar shape of fluctuations and almost exactly the same sample auto and cross correlations of the Robin.

Research and development of haptic simulator for Dental education using Virtual reality and User motion

  • Lee, Sang-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.52-57
    • /
    • 2018
  • The purpose of this paper is to develop simulations that can be used for virtual education in dentistry. The virtual education to be developed will be developed with clinical training and actual case data of tooth extraction. This development goal is to allow dental students to learn the necessary surgical techniques at the point of their choice, not going into the operating room, away from time, space, and physical limits. I want to develop content using VR. Oculus Rift HMD, Optical Based Outside-in Tracking System, Oculus Touch Motion Controller, and Headset as Input / Output Device. In this configuration, the optimization method is applied convergent, and when the operation of the VR contents is performed, the content data is extracted from the interaction analysis formed in the VR engine, and the data is processed by the content algorithm. It also computes events and dental operations generated within the 3D engine programming and generates corresponding events through data processing according to the input signal. The visualization information is output to the HMD using the rendering information. In addition, the operating room environment was constructed by studying lighting and material for actual operating room environment. We applied the ratio of actual space to virtual space and the ratio between character and actual person to create a spatial composition at a similar rate to actual space.

On Natural Motion Editing by a Geometric Mean Filter (기하학적 평균 필터에 의한 자연스러운 움직임 편집)

  • Kim Jin-Ok
    • Journal of Internet Computing and Services
    • /
    • v.4 no.2
    • /
    • pp.31-37
    • /
    • 2003
  • Recently, motion capture has become one of the most promising technologies in animation. Realistic motion data can be captured by recording the movement of a real actor with an optical or magnetic motion capture system. This paper deals with motion editing by a geometric mean filter. Since the captured motion has some noises that cause a jerky motion, it needs a smoothing process to make it natural. A geometric mean filter is proposed to produce natural motions without jerky motions. Experimental results show that the geometric mean filter can effectively remove noises that cause a jerky motion and it can guarantee the most natural motions among various spatial filters. This method could be applied to the various fields such as real time animation, virtual reality applications, 3D applications, and etc.

  • PDF

Accuracy of Bolton analysis measured in laser scanned digital models compared with plaster models (gold standard) and cone-beam computer tomography images

  • Kim, Jooseong;Lagravere, Manuel O.
    • The korean journal of orthodontics
    • /
    • v.46 no.1
    • /
    • pp.13-19
    • /
    • 2016
  • Objective: The aim of this study was to compare the accuracy of Bolton analysis obtained from digital models scanned with the Ortho Insight three-dimensional (3D) laser scanner system to those obtained from cone-beam computed tomography (CBCT) images and traditional plaster models. Methods: CBCT scans and plaster models were obtained from 50 patients. Plaster models were scanned using the Ortho Insight 3D laser scanner; Bolton ratios were calculated with its software. CBCT scans were imported and analyzed using AVIZO software. Plaster models were measured with a digital caliper. Data were analyzed with descriptive statistics and the intraclass correlation coefficient (ICC). Results: Anterior and overall Bolton ratios obtained by the three different modalities exhibited excellent agreement (> 0.970). The mean differences between the scanned digital models and physical models and between the CBCT images and scanned digital models for overall Bolton ratios were $0.41{\pm}0.305%$ and $0.45{\pm}0.456%$, respectively; for anterior Bolton ratios, $0.59{\pm}0.520%$ and $1.01{\pm}0.780%$, respectively. ICC results showed that intraexaminer error reliability was generally excellent (> 0.858 for all three diagnostic modalities), with < 1.45% discrepancy in the Bolton analysis. Conclusions: Laser scanned digital models are highly accurate compared to physical models and CBCT scans for assessing the spatial relationships of dental arches for orthodontic diagnosis.

Enhancement of MRI angiogram with modified MIP method

  • Lee, Dong-Hyuk;Kim, Jong-Hyo;Han, Man-Chung;Min, Byong-Goo
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.72-74
    • /
    • 1997
  • We have developed a 3-D image processing and display technique that include image resampling, modification of MIP, and fusion of MIP image and volumetric rendered image. This technique facilitates the visualization of the three-dimensional spatial relationship between vasculature and surrounding organs by overlapping the MIP image on the volumetric rendered image of the organ. We applied this technique to a MR brain image data to produce an MRI angiogram that is overlapped with 3-D volume rendered image of brain. MIP technique was used to visualize the vasculature of brain, and volume rendering was used to visualize the other structures of brain. The two images are fused after adjustment of contrast and brightness levels of each image in such a way that both the vasculature and brain structure are well visualized either by selecting the maximum value of each image or by assigning different color table to each image. The resultant image with this technique visualizes both the brain structure and vasculature simultaneously, allowing the physicians to inspect their relationship more easily. The presented technique will be useful for surgical planning for neurosurgery.

  • PDF

Numerical Analysis of 3-D Turbulent Flows Around a High Speed Train Including Cross-Wind Effects (측풍영향을 고려한 고속전철 주위의 3차원 난류유동 해석)

  • Jung Y. R.;Park W. G.;Ha S. D.
    • Journal of computational fluids engineering
    • /
    • v.1 no.1
    • /
    • pp.71-80
    • /
    • 1996
  • An iterative time marching procedure for solving incompressible turbulent flow has been applied to the flows around a high speed train including cross-wind effects. This procedure solves three-dimensional unsteady incompressible Reynolds-averaged Navier-Stokes equations on a non-orthogonal curvilinear coordinate system using first-order accurate schemes for the time derivatives and third/second-order accurate schemes for the spatial derivatives. Turbulent flows have been modeled by Baldwin-Lomax turbulent model. To validate present procedure, the flow around a high speed train at zero yaw angle was simulated and compared with experimental data. Generally good agreement with experiments was achieved. The flow fields around the high speed train at 9.2°, 16.7°, and 45° of yaw angle were also simulated.

  • PDF

On Natural Motion Editing by a Geometric Mean Filter (기하학적 평균 필터에 의한 자연스러운 움직임 편집)

  • Kim Jin-Ok
    • Journal of Internet Computing and Services
    • /
    • v.5 no.2
    • /
    • pp.41-47
    • /
    • 2004
  • Recently, motion capture has become one of the most promising technologies in animation. Realistic motion data can be captured by recording the movement of a real actor with an optical or magnetic motion capture system. This paper deals with motion editing by a geometric mean filter. Since the captured motion has some noises that cause a jerky motion, it needs a smoothing process to make it natural. A geometric mean filter is proposed to produce natural motions without jerky motions. Experimental results show that the geometric mean filter can effectively remove noises that cause a jerky motion and it can guarantee the most natural motions among various spatial filters. This method could be applied to the various fields such as real time animation, virtual reality applications, 3D applications, and etc.

  • PDF

A DNN-Based Personalized HRTF Estimation Method for 3D Immersive Audio

  • Son, Ji Su;Choi, Seung Ho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.161-167
    • /
    • 2021
  • This paper proposes a new personalized HRTF estimation method which is based on a deep neural network (DNN) model and improved elevation reproduction using a notch filter. In the previous study, a DNN model was proposed that estimates the magnitude of HRTF by using anthropometric measurements [1]. However, since this method uses zero-phase without estimating the phase, it causes the internalization (i.e., the inside-the-head localization) of sound when listening the spatial sound. We devise a method to estimate both the magnitude and phase of HRTF based on the DNN model. Personalized HRIR was estimated using the anthropometric measurements including detailed data of the head, torso, shoulders and ears as inputs for the DNN model. After that, the estimated HRIR was filtered with an appropriate notch filter to improve elevation reproduction. In order to evaluate the performance, both of the objective and subjective evaluations are conducted. For the objective evaluation, the root mean square error (RMSE) and the log spectral distance (LSD) between the reference HRTF and the estimated HRTF are measured. For subjective evaluation, the MUSHRA test and preference test are conducted. As a result, the proposed method can make listeners experience more immersive audio than the previous methods.