• Title/Summary/Keyword: 3D spatial data

Search Result 847, Processing Time 0.031 seconds

Big Data Architecture Design for the Development of Hyper Live Map (HLM)

  • Moon, Sujung;Pyeon, Muwook;Bae, Sangwon;Lee, Dorim;Han, Sangwon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.2
    • /
    • pp.207-215
    • /
    • 2016
  • The demand for spatial data service technologies is increasing lately with the development of realistic 3D spatial information services and ICT (Information and Communication Technology). Research is being conducted on the real-time provision of spatial data services through a variety of mobile and Web-based contents. Big data or cloud computing can be presented as alternatives to the construction of spatial data for the effective use of large volumes of data. In this paper, the process of building HLM (Hyper Live Map) using multi-source data to acquire stereo CCTV and other various data is presented and a big data service architecture design is proposed for the use of flexible and scalable cloud computing to handle big data created by users through such media as social network services and black boxes. The provision of spatial data services in real time using big data and cloud computing will enable us to implement navigation systems, vehicle augmented reality, real-time 3D spatial information, and single picture based positioning above the single GPS level using low-cost image-based position recognition technology in the future. Furthermore, Big Data and Cloud Computing are also used for data collection and provision in U-City and Smart-City environment as well, and the big data service architecture will provide users with information in real time.

3-D Spatial Data Modeling Software (3차원 공간자료 모델링 소프트웨어 개발)

  • Lee, Doo-Sung;Kim, Hyoun-Gyu
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.1
    • /
    • pp.1-5
    • /
    • 2002
  • We developed a modeling and visualization software that can analyze 3-dimensional spatial information in the ArcView environment. The software constructs and visualizes an object in 3 dimensional space from the input data given a number of horizontal cross-sections. The software can generate and visualize the cross-sections of the object in any azimuth and inclination. Utilizing the program users can modify the 3-D shape of the object by interactively editing the cross-sections.

Modeling 3D Cadaster for DBMS : focusing on Sectional Superficies (DBMS를 위한 3차원 지적 모델링 : 구분지상권을 중심으로)

  • Jun, Chul Min
    • Spatial Information Research
    • /
    • v.21 no.2
    • /
    • pp.73-83
    • /
    • 2013
  • 3D cadaster problems are getting attention and studied increasingly. However, correct concepts have not been established for three dimensional land uses and different rights problems around them. This is primarily due to the lack of proper methods for implementation and operation of 3D cadaster. 3D cadaster requiring far more huge data than 2D should be built in DBMS and need appropriate methods and processes for this. This study propose a method to model 3D cadaster using DBMS. First, it analyse and visualize possible problems around divided superficies in 3D spaces. Based on this, it illustrates UML models and shows an O-R mapping process to implement them using a RDBMS.

Palette-based Color Attribute Compression for Point Cloud Data

  • Cui, Li;Jang, Euee S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.3108-3120
    • /
    • 2019
  • Point cloud is widely used in 3D applications due to the recent advancement of 3D data acquisition technology. Polygonal mesh-based compression has been dominant since it can replace many points sharing a surface with a set of vertices with mesh structure. Recent point cloud-based applications demand more point-based interactivity, which makes point cloud compression (PCC) becomes more attractive than 3D mesh compression. Interestingly, an exploration activity has been started to explore the feasibility of PCC standard in MPEG. In this paper, a new color attribute compression method is presented for point cloud data. The proposed method utilizes the spatial redundancy among color attribute data to construct a color palette. The color palette is constructed by using K-means clustering method and each color data in point cloud is represented by the index of its similar color in palette. To further improve the compression efficiency, the spatial redundancy between the indices of neighboring colors is also removed by marking them using a flag bit. Experimental results show that the proposed method achieves a better improvement of RD performance compared with that of the MPEG PCC reference software.

Estimation of Solar Radiation Potential in the Urban Buildings Using CIE Sky Model and Ray-tracing

  • Yoon, Dong Hyeon;Song, Jung Heon;Koh, June Hwan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.2
    • /
    • pp.141-151
    • /
    • 2020
  • Since it was first studied in 1980, solar energy analysis model for geographic information systems has been used to determine the approximate spatial distribution of terrain. However, the spatial pattern was not able to be grasped in 3D (three-dimensional) space with low accuracy due to the limitation of input data. Because of computational efficiency, using a constant value for the brightness of the sky caused the simulation results to be less reliable especially when the slope is high or buildings are crowded around. For the above reasons, this study proposed a model that predicts solar energy of vertical surfaces of buildings with four stages below. Firstly, CIE (Commission Internationale de l'Eclairage) luminance distribution model was used to calculate the brightness distribution of the sky using NREL (National Renewable Energy Laboratory) solar tracking algorithm. Secondly, we suggested a method of calculating the shadow effect using ray tracing. Thirdly, LOD (Level of Detail) 3 of 3D spatial data was used as input data for analysis. Lastly, the accuracy was evaluated based on the atmospheric radiation data collected through the ground observation equipment in Daejeon, South Korea. As a result of evaluating the accuracy, NMBE was 5.14%, RMSE 11.12, and CVRMSE 7.09%.

Data Base Design Methods for Railway Facility Information using 3D Spatial (3차원 공간에서의 철도시설정보 데이터베이스 설계방안)

  • Yeon, Sang-Ho
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1003-1009
    • /
    • 2009
  • The Spatial Image contents of Geomorphology 3-D environment is focused by the requirement and importance in the fields such as, national land development plan, telecommunication facility management, railway construction, general construction engineering, Ubiquitous city development, safety and disaster prevention engineering. The currently used DEM system using contour lines, which embodies geographic information based on the 2-D digital maps and facility information has limitation in implementation in reproducing the 3-D spatial city. Moreover, this method often neglects the altitude of the rail way infrastructure which has narrow width and long length. This As the results, We confirmed the solutions of varieties application for railway facilities management using 3-D spatial image contents and database design. Also, I suggested that U-city using railway modeling about matching methods of high density elevation value using 3-D aerial photo with laser data are best approach for detail stereo modeling and simulation.

  • PDF

U-city Construction Topographic features Extraction by Integration of Digital Aerial Photo and Laser Data (항공사진과 레이져 데이터의 통합에 의한 U-city 건설 지형 특성 자료 산출 연구)

  • Yeon, SangHo;Kim, Kwanghyun
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.485-487
    • /
    • 2009
  • The Spatial Image contents of Geomorphology 3-D environment is focused by the requirement and importance in the fields such as, national land development plan, telecommunication facility management, railway construction, general construction engineering, Ubiquitous city development, safety and disaster prevention engineering. The currently used DEM system using contour lines, which embodies geographic information based on the 2-D digital maps and facility information has limitation in implementation in reproducing the 3-D spatial city. Moreover, this method often neglects the altitude of the rail way infrastructure which has narrow width and long length. This As the results, We confirmed the solutions of varieties application for railway facilities management using 3-D spatial image contents and database design. Also, I suggested that U-city using topographical modeling about matching methods of high density elevation value using 3-D aerial photo with laser data are best approach for detail stereo modeling and simulation.

  • PDF

Construction Plan of 3D Cadastral Information System on Underground Space (지하공간 3차원 지적정보시스템 구축 방안 연구)

  • Song, Myungsoo;Lee, Sungho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.6
    • /
    • pp.57-65
    • /
    • 2014
  • Recently, Construction business is changing from on the ground to underground space because of deficit of developing space, creation of green space and of incremental of land compensation expenses. Meanwhile, 3D Topographic, Marine and Cadastral maps need to have Spatial Interrelation. Also, understanding of the information is also needed. Spatial information object registration system is impossible to contact and understanding intelligence mutually because the former one is managed as automatic ID system. Therefore, 3D Object information ID System of underground space is managed based on Object Identifier. Construction of Spatial information integration ID System is required and it will offer Division Code (Ground, Index, Underground) and depth information. We are defined and classified Under Spatial Information in this paper. Moreover, we developed the integration ID System based on UFID for cadastral information Construction. We supposed underground spatial information DB Construction and a developed the way of exploiting 3D cadastral information system through the study. The research result will be the base data of Standard ID system, DB Construction and system Development of National spatial data which is considered together with spatial interrelation.

A Study on the Comparison Between Full-3D and Quasi-1D Supercompact Multiwavelets (Full-3D와 Quasi-1D Supercompact Multiwavelets의 비교 연구)

  • Park, June-Pyo;Lee, Do-Hyung;Kwon, Do-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1608-1615
    • /
    • 2004
  • CFD data compression methods based on Full-3D and Quasi-1D supercompact multiwavelets are presented. Supercompact wavelets method provide advantageous benefit that it allows higher order accurate representation with compact support. Therefore it avoids unnecessary interaction with remotely located data across singularities such as shock. Full-3D wavelets entails appropriate cross-derivative scaling function & wavelets, hence it can allow highly accurate multi-spatial data representation. Quasi-1D method adopt 1D multiresolution by alternating the directions rather than solving huge transformation matrix in Full-3D method. Hence efficient and relatively handy data processing can be conducted. Several numerical tests show swift data processing as well as high data compression ratio for CFD simulation data.

Automatic Registration of Point Cloud Data between MMS and UAV using ICP Method (ICP 기법을 이용한 MSS 및 UAV 간 점군 데이터 자동정합)

  • KIM, Jae-Hak;LEE, Chang-Min;KIM, Hyeong-Joon;LEE, Dong-Ha
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.4
    • /
    • pp.229-240
    • /
    • 2019
  • 3D geo-spatial model have been widely used in the field of Civil Engineering, Medical, Computer Graphics, Urban Management and many other. Especially, the demand for high quality 3D spatial information such as precise road map construction has explosively increased, MMS and UAV techniques have been actively used to acquire them more easily and conveniently in surveying and geo-spatial field. However, in order to perform 3D modeling by integrating the two data set from MMS and UAV, its so needed an proper registration method is required to efficiently correct the difference between the raw data acquisition sensor, the point cloud data generation method, and the observation accuracy occurred when the two techniques are applied. In this study, we obtained UAV point colud data in Yeouido area as the study area in order to determine the automatic registration performance between MMS and UAV point cloud data using ICP(Iterative Closet Point) method. MMS observations was then performed in the study area by dividing 4 zones according to the level of overlap ratio and observation noise with based on UAV data. After we manually registered the MMS data to the UAV data, then compared the results which automatic registered using ICP method. In conclusion, the higher the overlap ratio and the lower the noise level, can bring the more accurate results in the automatic registration using ICP method.