• Title/Summary/Keyword: 3D shell structures

Search Result 82, Processing Time 0.026 seconds

Fabrication and Manipulation of Gold 1D Chain Assemblies Using Magnetically Controllable Gold Nanoparticles

  • Kim, Lily Nari;Kim, Eun-Geun;Kim, Junhoi;Choi, Sung-Eun;Park, Wook;Kwon, Sunghoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3735-3739
    • /
    • 2012
  • We have developed magnetically controllable gold nanoparticles by synthesizing superparamagnetic $Fe_3O_4$ core/gold shell nanoparticles. The core/shell particles have the capability of forming gold 1D chains in the presence of an external magnetic field. Here we demonstrate dynamic and reversible self-assembly of the gold 1D chain structures in an aqueous solution without any templates or physical or chemical attachment. The spatial configuration of gold chains can be arbitrarily manipulated by controlling the direction of a magnetic field. This technique can provide arbitrary manipulation of gold 1D chains for fabrication purpose. To demonstrate this capability, we present a technique for immobilization of the gold particle chains on a glass substrate.

Synthesis of Metal Oxide-Coated Conductive Metal Powders and Their Application to Front Electrodes for Solar Cells (산화물이 코팅된 전도성 금속 분말의 제조 및 태양전지 전면 전극으로의 응용)

  • Park, Jin Gyeong;Lee, Young-In
    • Korean Journal of Materials Research
    • /
    • v.24 no.9
    • /
    • pp.502-507
    • /
    • 2014
  • Recently, improvement in the conversion efficiency of silicon-based solar cells has been achieved by decreasing emitter doping concentration, because the lightly doped emitter can effectively prevent the recombination of electrons and holes generated by solar light irradiation. This type of emitter is very thin due to the low doping concentration, thus conductive materials (i.e., silver) used for front electrodes can easily penetrate the emitter during a firing process because of their large diffusivity in silicon. This results in junction leakage currents which might reduce cell efficiencies. In this study, $Al_2O_3$-coated Ag powders were synthesized by an ultrasonic spray pyrolysis method and applied to the conductive materials of the front electrode to control the junction leakage current. The $Al_2O_3$ shell obstructs the Ag diffusion into the emitter during the firing process. The powder is spherical with a core-shell structure and the thickness of the $Al_2O_3$ shell is tens of nanometers. Solar cells were fabricated using pure Ag powders or the $Al_2O_3$-coated Ag powder as front electrode materials, and the conversion efficiency and junction leakage current were compared to investigate the role of the $Al_2O_3$ shell during the firing processes.

Stability analyses of a cylindrical steel silo with corrugated sheets and columns

  • Sondej, Mateusz;Iwicki, Piotr;Wojcik, Michal;Tejchman, Jacek
    • Steel and Composite Structures
    • /
    • v.20 no.1
    • /
    • pp.147-166
    • /
    • 2016
  • The paper presents comprehensive quasi-static stability analysis results for a real funnel-flow cylindrical steel silo composed of horizontally corrugated sheets strengthened by vertical thin-walled column profiles. Linear buckling and non-linear analyses with geometric and material non-linearity were carried out with a perfect and an imperfect silo by taking into account axisymmetric and non-axisymmetric loads imposed by a bulk solid following Eurocode 1. Finite element simulations were carried out with 3 different numerical models (single column on the elastic foundation, 3D silo model with the equivalent orthotropic shell and full 3D silo model with shell elements). Initial imperfections in the form of a first eigen-mode for different wall loads and from 'in-situ' measurements with horizontal different amplitudes were taken into account. The results were compared with Eurocode 3. Some recommendations for the silo dimensioning were elaborated.

Buckling Analysis of Box-typed Structures using Adaptive Shell Finite Elements (적응적 쉘유한요소를 이용한 박스형 구조물의 좌굴해석)

  • Song, Myung-Kwan;Kim, Sun-Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.265-272
    • /
    • 2007
  • The finite element linear buckling analysis of folded plate structures using adaptive h-refinement methods is presented in this paper. The variable-node flat shell element used in this study possesses the drilling D.O.F. which, in addition to improvement of the element behavior, permits an easy connection to other elements with six degrees of freedom per node. The Box-typed structures can be analyzed using these developed flat shell elements. By introducing the variable-node elements some difficulties associated with connecting the different layer patterns, which are common in the adaptive h-refinement on quadrilateral mesh, can be overcome. To obtain better stress field for the error estimation, the super-convergent patch recovery is used. The convergent buckling modes and the critical loads associated with these modes can be obtained.

Structural design methodology for lightweight supporting structure of a multi-rotor wind turbine

  • Park, Hyeon Jin;Oh, Min Kyu;Park, Soonok;Yoo, Jeonghoon
    • Wind and Structures
    • /
    • v.34 no.3
    • /
    • pp.291-301
    • /
    • 2022
  • Although mostly used in wind turbine market, single rotor wind turbines have problems with transportation and installation costs due to their large size. In order to solve such problems, multi-rotor wind turbine is being proposed; however, light weight design of multi-rotor wind turbine is required considering the installation at offshore or deep sea. This study proposes the systematic design process of the multi-rotor wind turbine focused on its supporting structure with simultaneous consideration of static and dynamic behaviors in an ideal situation. 2D and successive 3D topology optimization process based on the density method were applied to minimize the compliance of supporting structure. To realize the conceptual design obtained by topology optimization for manufacturing feasibility, the derived 3D structure was modified to have shell structures and optimized again through parametric design using the design of experiments and the response surface method for detail design of their thicknesses and radii. The resultant structure was determined to satisfy the stress and the buckling load constraint as well as to minimize the weight and the resultant supporting structure were verified numerically.

Women's Pant Pattern Design According to the Style Using 3D Body Scan Data (3차원 스캔 데이터를 활용한 스타일별 여성 팬츠 패턴 연구)

  • Yoon, Mi Kyung;Nam, Yun Ja
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.40 no.1
    • /
    • pp.97-113
    • /
    • 2016
  • This study develops pant patterns using body shape, measurement and shell mesh data to decide optimal women's pants according to styles with excellent size, fit and shape for different individuals and silhouettes. Standard landmarks, lines, triangles and structures were set on a 3D scanned lower body shell to represent women in their twenties and flattened as a 2D pattern. Patterns were created and analyzed according to culotte, formal, slacks and tight type considering crotch shape, location of the crotch point, and adjusting waist darts. Flattened patterns were rotated to compare existing methods. The crease lines were then set through the hip protrusion point and compared. The main factor of the pant pattern were extracted, total rise, crotch depth, crotch width, angle of center line, shape of the center line curve, the thigh width, the amount of waist dart, and crease line position. With going tight style from the culotte, the fits are closer to the figure with minimized thigh circumference, the dart amount decreases, the crotch depth increases, the crotch extensions were shorter, and the angle of the center back increased. The total rise is U shape for culotte and is closer to V shape as the silhouette tightens. T-test of appearance evaluation of the developed pant pattern were conducted after analyzing measurements and shapes of each styles. The results of the developed patterns were superior to existing patterns in accordance to hip line between body and pants as well as appearance evaluation. We found systematic mechanisms among pattern factors that create various pant silhouettes. Evidence on classification of the silhouettes of traditional types of pants were explained objectively through the process of playing out 3D forms.

Topology Optimization of Shell Structures Using Adaptive Inner-Front Level Set Method (AIFLSM) (적응적 내부 경계를 갖는 레벨셋 방법을 이용한 쉘 구조물의 위상최적설계)

  • Park, Kang-Soo;Youn, Sung-Kie
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.354-359
    • /
    • 2007
  • A new level set based topology optimization employing inner-front creation algorithm is presented. In the conventional level set based topology optimization, the optimum topology strongly depends on the initial level set distribution due to the incapability of inner-front creation during optimization process. In the present work, an inner-front creation algorithm is proposed, in which the sizes, positions, and number of new inner-fronts during the optimization process can be globally and consistently identified. To update the level set function during the optimization process, the least-squares finite element method is employed. As demonstrative examples for the flexibility and usefulness of the proposed method, the level set based topology optimization considering lightweight design of 3D shell structure is carried out.

  • PDF

Parametric Design on Bellows of Piping System Using Fuzzy Knowledge Processing

  • Lee Yang-Chang;Lee Joon-Seong;Choi Yoon-Jong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.144-149
    • /
    • 2006
  • This paper describes a novel automated analysis system for bellows of piping system. An automatic finite element (FE) mesh generation technique, which is based on the fuzzy theory and computational geometry technique, is incorporated into the system, together with one of commercial FE analysis codes and one of commercial solid modelers. In this system, a geometric model, i.e. an analysis model, is first defined using a commercial solid modelers for 3-D shell structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Delaunay triangulation technique is introduced as a basic tool for element generation. The triangular elements are converted to quadrilateral elements. Practical performances of the present system are demonstrated through several analysis for bellows of piping system.

Parametric Study on Bellows of Piping System Using Fuzzy Theory

  • Lee Yang-Chang;Lee Joon-Seong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.1
    • /
    • pp.58-63
    • /
    • 2006
  • This paper describes a novel automated analysis system for bellows of piping system. An automatic finite element (FE) mesh generation technique, which is based on the fuzzy theory and computational geometry technique, is incorporated into the system, together with one of commercial FE analysis codes and one of commercial solid modelers. In this system, a geometric model, i.e. an analysis model, is first defined using a commercial solid modelers for 3-D shell structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Delaunay triangulation technique is introduced as a basic tool for element generation. The triangular elements are converted to quadrilateral elements. Practical performances of the present system are demonstrated through several analysis for bellows of piping system.

A Study on the Analysis and Corner Joint Design of Underground R.C Box Structure (지하의 철근콘크리트 박스구조물의 해석 및 우각부 설계에 관한 연구)

  • 오병환;채성태;신호상;김의성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.253-257
    • /
    • 1996
  • A basic assumption in the current design and analysis of reinforced concrete(RC) box structures, which are constructed by the open cut and fill method, is that the displacements and forces are uniform in the longitudinal direction of the structure. The solution may be therefore obtatined from the analysis of a unit wide strip along longitudinal axis. This strip is said to be in a plane strain condition, meaning that the out of plane deformations are vanished. The current design of box structure is carried out by the result of planar frame model for the sake of simplicity. The purpose of this study is to show more rational design method of box culverts considering a rigid zone of corner joints. The current analysis of box structures will be compared with the plane strain analysis as well as 3-d shell model. Reinforcement quantity is also determined to resist the tensile force in corner joints of box structures using strut-tie model which has been developed through the elastic analysis.

  • PDF