• Title/Summary/Keyword: 3D shape deformation

Search Result 176, Processing Time 0.026 seconds

Studies on the characteristics of stone structures by shape reversal, geotechnical and dynamic structural engineerings (석조구조물의 효율적 유지관리를 위한 형상역공학적, 지반공학적 및 구조동역학적 특성연구 - 첨성대를 중심으로 -)

  • Shon, Bo-Woong;Kim, Seong-Beom
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.25-48
    • /
    • 2004
  • Structures show the phehomena of deformation and lowering of function with time-lapse by artificial environments and changes of geotechnical conditions or accumulation of initial deformation elements. This study aims the structural assessment of cultural property, Chum-Sung-Dae, located in Kyeongju city, Korea. It was built about 1,300 years ago, and has undergone deformation and ground-subsidence with time-lapse. Non-destructive evaluation techniques were applied to the Chum-Sung-Dae, to protect it from survey Because of this reason, 3D precise laser scanning surveying system was applied to measure the exact size of Chum-Sung-Dae, displacement and declining angles. Geophysical exploration also was applied to study the subsurface distribution of geotechnical parameters or physical properties. Natural frequencies were measured from real and model of Chum-Sung-Dae to study the dynamic characteristics of vibration and/or earthquake load and stiffness of structures.

  • PDF

Internal Flow Characteristic Analysis and Deformation of Foil Considering Slip between Foils (Foil사이의 미끄러짐을 고려한 Foil Bearing변형 및 내부유동특성해석)

  • Lee, S.H.;Won, C.S.;Hur, N.;Jeon, S.B.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.482-487
    • /
    • 2001
  • Leaf type foil bearings have been used successfully in many aerospace applications such as air cycle machines, turbocompressors and turboexpander. These applications are characterized by light loads, constant speeds and low to moderate temperatures. But, as system on start-up or shutdown, sliding contact between the shaft and foil surfaces cause wear. So, in present study, to understand pressure-flow characteristics and deformation of foil bearing, flow/structure interaction analysis was used. and using this method, 2D and 3D calculation was peformed for shape of foil bearing to know circumferential direction flow and leakage flow characteristics of axial direction.

  • PDF

Human Limbs Modeling from 3D Scan Data (3차원 스캔 데이터로부터의 인체 팔, 다리 형상 복원)

  • Hyeon, Dae-Eun;Yun, Seung-Hyeon;Kim, Myeong-Su
    • Journal of the Korea Computer Graphics Society
    • /
    • v.8 no.4
    • /
    • pp.1-7
    • /
    • 2002
  • This paper presents a new approach for modeling human limbs shape from 3D scan data. Based on the cylindrical structure of limbs, the overall shape is approximated with a set of ellipsoids through ellipsoid fitting and interpolation of fit-ellipsoids. Then, the smooth domain surface representing the coarse shape is generated as the envelope surface of ellipsoidal sweep, and the fine details are reconstructed by constructing parametric displacement function on the domain surface. For fast calculation, the envelope surface is approximated with ellipse sweep surface, and points on the reconstructed surface are mapped onto the corresponding ellipsoid. We demonstrate the effectiveness of our approach for skeleton-driven body deformation.

  • PDF

On the Deformation Analysis of the Brake Tube-End for Automobiles (자동차용 브레이크 튜브 관단부의 성형해석)

  • Han, K.T.;Park, J.S.
    • Journal of Power System Engineering
    • /
    • v.6 no.3
    • /
    • pp.31-35
    • /
    • 2002
  • Brake tube is considered one of the most important parts in automobile. The shape of brake tube end has a great influence on the function of brake, and the quality and productivity of brake tube have relation to die design. The forming process of brake tube end is performed by hydraulic press forming machine. In this paper, the forming processes of tube end for automobile is analyzed and designed to make the optimal form of brake tube end. Also, finite element analysis has been carried out using $DEFORM^{TM}% 3D to predict the optimal shape of brake tube end and the results obtained showed the optimal length between punch and chuck is $1.0{\sim}1.2mm$. The shape of tube end is in good agreement with the finite element simulations and the experimental results.

  • PDF

Adaptive mesh refinement for 3-D hexahedral element mesh by iterative inserting zero-thickness element layers (무두께 요소층을 이용한 육면체 격자의 반복적 적응 격자 세분)

  • Park C. H.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.79-82
    • /
    • 2004
  • In this study, a new refinement technique for 3-dimensional hexahedral element mesh is proposed, which is aimed at the control of mesh density. With the proposed scheme the mesh is refined adaptively to the elemental error which is estimated by 'a posteriori' error estimator based on the energy norm. A desired accuracy of an analysis i.e. a limit of error defines the new desired mesh density map on the current mesh. To obtain the desired mesh density, the refinement procedure is repeated iteratively until no more elements to be refined exist. In the algorithm, at first the regions of mesh to be refined are defined and, then, the zero-thickness element layers are inserted into the interfaces between the regions. All the meshes in the regions, in which the zero-thickness layers are inserted, are to be regularized in order to improve the shape of the slender elements on the interfaces. This algorithm is tested on a simple shape of 2-d quadrilateral element mesh and 3-d hexahedral element mesh. A numerical example of elastic deformation of a plate with a hole shows the effectiveness of the proposed refinement scheme.

  • PDF

Three-dimensional numerical parametric study of shape effects on multiple tunnel interactions

  • Chen, Li'ang;Pei, Weiwei;Yang, Yihong;Guo, Wanli
    • Geomechanics and Engineering
    • /
    • v.31 no.3
    • /
    • pp.237-248
    • /
    • 2022
  • Nowadays, more and more subway tunnels were planed and constructed underneath the ground of urban cities to relieve the congested traffic. Potential damage may occur in existing tunnel if the new tunnel is constructed too close. So far, previous studies mainly focused on the tunnel-tunnel interactions with circular shape. The difference between circular and horseshoe shaped tunnel in terms of deformation mechanism is not fully investigated. In this study, three-dimensional numerical parametric studies were carried out to explore the effect of different tunnel shapes on the complicated tunnel-tunnel interaction problem. Parameters considered include volume loss, tunnel stiffness and relative density. It is found that the value of volume loss play the most important role in the multi-tunnel interactions. For a typical condition in this study, the maximum invert settlement and gradient along longitudinal direction of horseshoe shaped tunnel was 50% and 96% larger than those in circular case, respectively. This is because of the larger vertical soil displacement underneath existing tunnel. Due to the discontinuous hoop axial stress in horseshoe shaped tunnel, significant shear stress was mobilized around the axillary angles. This resulted in substantial bending moment at the bottom plate and side walls of horseshoe shaped tunnel. Consequently, vertical elongation and horizontal compression in circular existing tunnel were 45% and 33% smaller than those in horseshoe case (at monitored section X/D = 0), which in latter case was mainly attributed to the bending induced deflection. The radial deformation stiffness of circular tunnel is more sensitive to the Young's modulus compared with horseshoe shaped tunnel. This is because of that circular tunnel resisted the radial deformation mainly by its hoop axial stress while horseshoe shaped tunnel do so mainly by its flexural rigidity. In addition, the reduction of soil stiffness beneath the circular tunnel was larger than that in horseshoe shaped tunnel at each level of relative density, indicating that large portion of tunneling effect were undertaken by the ground itself in circular tunnel case.

A Study on CFD of Turbo fan and Fabrication of Turbo Fan with Honeycombs by PBF (터보 팬의 유동해석 및 허니콤 구조가 적용된 터보 팬의 PBF 3D 프린팅 제작에 관한 연구)

  • Jin, Chul-Kyu;Lee, Haesoo;Lee, Un-Gil;Woo, Jae-Hyeog
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.5
    • /
    • pp.899-908
    • /
    • 2022
  • In this study, a study was conducted to localize a large aluminum turbo fan used for tank powerpack. The turbo fan was scanned with a 3D scanner and then 3D modeling was performed. Computational fluid dynamics (CFD) were performed from the performance conditions of the fan, and structural analysis was performed using the pressure data obtained from CFD. The fan was reduced to 1/5 size by applying the geometric similarity. A 1/5 size fan has a honeycomb structure inserted into the front shroud and back shroud to reduce the weight by 5.3%. A 1/5 size fan was printed using a PBF 3D printer, and a 1/5 size fan with honeycombs was also printed. The pressure drop of 8.67 kPa and the required power of 138.19 kW, which satisfies the performance conditions of the fan, were confirmed from the results of CFD. The values of the maximum deformation amount of 0.000788 mm and the maximum effective stress of 0.241 MPa were confirmed from the structural analysis results. The fan printed by the PBF 3D printer had the same shape as the modeling, and the shape was perfect. There are no defects anywhere in appearance. However, the condition of the outer surface of the fan's back shroud is rough compared to other locations. The fan in which the honeycomb was inserted was also perfectly output, and the shape of the honeycomb was the same as the modeling.

Effect of Microporosity on Tensile Properties of As-Cast AZ91D Magnesium Alloy

  • 이충도
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.283-283
    • /
    • 1999
  • In the present study, the effect of microporosity on the tensile properties of as-cast AZ91D magnesium alloy was investigated through experimental observation and numerical prediction. The test specimens were fabricated by die-casting and gravity-casting. For gravity-casting, the inoculation and use of various metallic moulds were applied to obtain a wide range of microporosity. The deficiency of the interdendritic feeding of the liquid phase acted as d dominant mechanism on the formation of the micropores in the Mg-Al-alloys, rather than the evolution of hydrogen gas. Although tensile strength and elongation has a nonlinear and very intensive dependence upon microporosity, the yield strength appeared to have a linear relationship with microporosity. However, it was possible to quantitatively estimate the linear contribution of microporosity on the individual tensile property far a range of microporosity, which was below about B %. The numerical prediction suggests that the effect of microporosity on fractured strength and elongation decreased as the strain hardening exponent increased. Furthermore. the shape and distribution of micropores may play a more dominant role than local plastic deformation on the tensile behavior of AZ9lD alloy.

Development of a Bellows Finite Element for the Analysis of Piping System (배관시스템 해석을 위한 벨로우즈 유한요소의 개발)

  • 고병갑;박경진;이완익
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1439-1450
    • /
    • 1995
  • Bellows is a familiar component in piping systems as it provides a relatively simple means of absorbing thermal expansion and providing system flexibility. In routine piping flexibility analysis by finite element methods, bellows is usually considered to be straight pipe runs modified by an appropriate flexibility factor; maximum stresses are evaluated using a corresponding stress concentration factor. The aim of this study is to develop a bellows finite element, which similarly includes more complex shell type deformation patterns. This element also does not require flexibility or stress factors, but evaluates more detailed deformation and stress patterns. The proposed bellows element is a 3-D, 2-noded line element, with three degrees of freedom per node and no bending. It is formulated by including additional 'internal' degrees of freedom to account for the deformation of the bellows corrugation; specifically a quarter toroidal section of the bellows, loaded by axial force, is considered and the shell type deformation of this is include by way of an approximating trigonometric series. The stiffness of each half bellows section may be found by minimising the potential energy of the section for a chosen deformation shape function. An experiment on the flexibility is performed to verify the reliability for bellows finite element.

Modeling of 3D object shape based on Superquadrics and Z-Buffer Algorithm

  • Kim, Dae-Hyun;D.H. Hyeon;Lee, S.H.;Park, J.S.
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.1088-1091
    • /
    • 2000
  • Superquadrics can represent various and complex 3D objects with only some parameters(size, position, deformation etc.). So if we use both superquadrics and deformed superquadrics, we can also represent more realistic 3D objects which are existed in real world. In this paper we use the z-buffer algorithm and stencil buffer together because this is very useful when the superquadric primitives are combined. The fundamental ideas are illustrated with a number of tables and figures.

  • PDF