• Title/Summary/Keyword: 3D shape acquisition

Search Result 45, Processing Time 0.027 seconds

The shape measurement of 3D object by using the method of interference pattern projection. (간섭무늬 투영 방식의 3차원 형상 측정)

  • 이연태;강영준;박낙규;황용선;백성훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.271-274
    • /
    • 2002
  • The 3-D measurement using interference pattern projection is very attractive because of its high measuring speed and high sensitivity. When a sinusoidal amplitude grating was projected on an object, the surface-height distribution of the object is translated into a phase distribution of the deformed grating image. The patters was generated by a interferometer, and a PZT was used to shift the fringes on the target surface. The phase-acquisition algorithms are so sufficiently simple that high-resolution phase maps using a CCD camera can be generated in a short time. A working system requires a interferometer, a PZT, and a detector array interfaced to a microcomputer. Results of measurements on the diffused test objects are described.

  • PDF

Image Noise Removal using State Estimation Filter (상태 추정 필터를 이용한 영상 잡음 제거)

  • Jang, Hoon-Seok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.4
    • /
    • pp.237-242
    • /
    • 2022
  • Acquiring high-quality images in control and measurement systems is one of the important factors. Among image acquisition technologies, SFF (Shape from Focus) is a technology for recovering a 3D shape by acquiring 2D images with different focus levels by moving an object at a predetermined step size along the optical axis. For SFF, when an object is moved at a constant step size, mechanical vibration, referred as jitter noise, occurs in each step along the optical axis. In this paper, a new state estimation filter is designed and applied for reducing the jitter noise. For the application of the proposed method, the jitter noise and focus curves are modeled as Gaussian function. Experimental results demonstrate the effectiveness of proposed method.

Type Classification and Shape Display of Brazing Defect in Heat Exchanger (열교환기 브레이징 결함의 유형 분류 및 형상 디스플레이)

  • Kim, Jin-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.2
    • /
    • pp.171-176
    • /
    • 2013
  • X-ray cross-sectional image-based inspection technique is one of the most useful methods to inspect the brazing joints of heat exchanger. Through X-ray cross-sectional image acquisition, image processing, and defect inspection, the defects of brazing joints can be detected. This paper presents a method to judge the type of detected defects automatically, and to display them three-dimensionally. The defect type is classified as unconnected defect, void, and so on, based on location, size, and shape information of defect. Three-dimensional display which is realized using OpenGL (Open Graphics Library) will be helpful to understand the overall situation including location, size, shape of the defects in a test object.

The study of depth information acquisition in 2D pattern image (2차원 패턴 영상에서의 3차원 정보취득에 관한 연구)

  • Kim Tae-Eun
    • Journal of Digital Contents Society
    • /
    • v.6 no.1
    • /
    • pp.35-39
    • /
    • 2005
  • It is significantly important problem in computer what is estimating 3D information from 2D images. However, most of the related works have been interested in the analysis of the changes of 2D image, so that, they need much time to solve the complex equation and expensive device. In this paper, we first actively project the pattern of the sinusoidal wave into the object. Then, we measure the change of the phase from the distortion occurring according to the shape of the object, and we use the change of the phase in order to estimate the depth information. This is our proposal.

  • PDF

Development and Evaluation of System for 3D Visualization Model of Biological Objects (3차원 생물체 가시화 모델 구축장치 개발 및 성능평가)

  • Hwang, H.;Choi, T. H.;Kim, C. H.;Lee, S. H.
    • Journal of Biosystems Engineering
    • /
    • v.26 no.6
    • /
    • pp.545-552
    • /
    • 2001
  • Nondestructive methods such as ultrasonic and magnetic resonance imaging systems have many advantages but still much expensive. And they do not give exact color information and may miss some details. If it is allowed to destruct a biological object to obtain interior and exterior informations, 3D image visualization model from a series of sliced sectional images gives more useful information with relatively low cost. In this paper, a PC based automatic 3D visualization system is presented. The system is composed of three modules. The first module is the handling and image acquisition module. The handling module feeds and slices a cylindrical shape paraffin, which holds a biological object inside the paraffin. And the paraffin is kept being solid by cooling while being handled. The image acquisition modulo captures the sectional image of the object merged into the paraffin consecutively. The second one is the system control and interface module, which controls actuators for feeding, slicing, and image capturing. And the last one is the image processing and visualization module, which processes a series of acquired sectional images and generates a 3D volumetric model. To verify the condition for the uniform slicing, normal directional forces of the cutting edge according to the various cutting angles were measured using a strain gauge and the amount of the sliced chips were weighed and analyzed. Once the 3D model was constructed on the computer, user could manipulate it with various transformation methods such as translation, rotation, and scaling including arbitrary sectional view.

  • PDF

A New 3D Shape Measurement Method using 2 CCD Cameras (2대의 CCD 카메라를 이용한 새로운 3차원 형상 측정법)

  • Kim, Jang-Ju;Jung, Gook-Young
    • Journal of Technologic Dentistry
    • /
    • v.24 no.1
    • /
    • pp.73-81
    • /
    • 2002
  • Accurate acquisition of surface geometries such as machined surfaces, biological surfaces, and deformed parts have been very important technique in scientific study and engineering, expecially for system design, manufacturing and inspection. Two camera method is relatively simple with an acceptable accuracy. In this paper, a new method is studied to acquire 3D geometric data of the small object such as a die in stone model. When the devices, cameras, laser beam and object are in a perfect plane, the calculation becomes very simple with less error. But this paper shows that arbitrarily positioned system can also be used to obtain 3D data.

  • PDF

Image-Based Approach for Modeling 3D Shapes with Curved Surfaces (곡면을 포함하는 형상의 영상을 이용한 모델링)

  • Lee, Man-Hee;Park, In-Kyu
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.1
    • /
    • pp.38-48
    • /
    • 2007
  • In this paper, we propose an image-based method for modeling 3D objects with curved surfaces based on the NURBS (Non-Uniform Rational B-Splines) representation. Starting from a few calibrated images, the user specifies the corresponding curves by means of an interactive user interface. Then, the 3D curves are reconstructed using stereo reconstruction. In order to fit the curves easily using the interactive user interface, NURBS curves and surfaces are employed. The proposed surface modeling techniques include surface building methods such as bilinear surfaces, ruled surfaces, generalized cylinders, and surfaces of revolution. In addition to these methods, we also propose various advanced surface modeling techniques, including skinned surfaces, swept surfaces, and boundary patches. Based on these surface modeling techniques, it is possible to build various types of 3D shape models with textured curved surfaces without much effort. Also, it is possible to reconstruct more realistic surfaces by using proposed view-dependent texture acquisition algorithm. Constructed 3D shape model with curves and curved surfaces can be exported in VRML format, making it possible to be used in different 3D graphics softwares.

Reconstruction of polygonal prisms from point-clouds of engineering facilities

  • Chida, Akisato;Masuda, Hiroshi
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.322-329
    • /
    • 2016
  • The advent of high-performance terrestrial laser scanners has made it possible to capture dense point-clouds of engineering facilities. 3D shape acquisition from engineering facilities is useful for supporting maintenance and repair tasks. In this paper, we discuss methods to reconstruct box shapes and polygonal prisms from large-scale point-clouds. Since many faces may be partly occluded by other objects in engineering plants, we estimate possible box shapes and polygonal prisms and verify their compatibility with measured point-clouds. We evaluate our method using actual point-clouds of engineering plants.

3D Generic Vertebra Model for Computer Aided Diagnosis (컴퓨터를 이용한 의료 진단용 3차원 척추 제네릭 모델)

  • Lee, Ju-Sung;Baek, Seung-Yeob;Lee, Kun-Woo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.4
    • /
    • pp.297-305
    • /
    • 2010
  • Medical image acquisition techniques such as CT and MRI have disadvantages in that the numerous time and efforts are needed. Furthermore, a great amount of radiation exposure is an inherent proberty of the CT imaging technique, a number of side-effects are expected from such method. To improve such conventional methods, a number of novel methods that can obtain 3D medical images from a few X-ray images, such as algebraic reconstruction technique (ART), have been developed. Such methods deform a generic model of the internal body part and fit them into the X-ray images to obtain the 3D model; the initial shape, therefore, affects the entire fitting process in a great deal. From this fact, we propose a novel method that can generate a 3D vertebraic generic model based on the statistical database of CT scans in this study. Moreover, we also discuss a method to generate patient-tailored generic model using the facts obtained from the statistical analysis. To do so, the mesh topologies of CT-scanned 3D vertebra models are modified to be identical to each other, and the database is constructed based on them. Furthermore, from the results of a statistical analysis on the database, the tendency of shape distribution is characterized, and the modeling parameters are extracted. By using these modeling parameters for generating the patient-tailored generic model, the computational speed and accuracy of ART can greatly be improved. Furthermore, although this study only includes an application to the C1 (Atlas) vertebra, the entire framework of our method can be applied to other body parts generally. Therefore, it is expected that the proposed method can benefit the various medical imaging applications.

Precision enhancement for a CCD/LSB type shape measuring system (CCD/LSB 방식의 형상측정시스템의 정밀도 향상 방법)

  • 유주상;정규원
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.137-142
    • /
    • 2001
  • Since recent production system becomes that of the small quantity, large volume with high quality production, accurate and high speed inspection system is required. In such situation, noncontact 3D measurement system which utilized CCD cameras is useful technique in terms of system cost, speed of data acquisition, measuring accuracy and application. However, it has low accuracy compared with contact 3D measurement system because of the camera distortion, non uniformity of laser distribution and so on. For those reasons, in this paper precision enhancement method is studied considering radial camera distortion, and laser distribution. A distortion correction method is applied even to the standard lens. The laser slit beam trajectory is determined by 3 method: based of the Gaussian function signal approximation, the median method, the center of gravity method and the peak point of the Gaussian function method.

  • PDF