• Title/Summary/Keyword: 3D sensor

Search Result 1,604, Processing Time 0.037 seconds

Proteomics Analysis of Early Salt-Responsive Proteins in Ginseng (Panax ginseng C. A. Meyer) Leaves (초기 염류 스트레스 반응 인삼 잎 단백질체 분석)

  • Kim, So Wun;Min, Chul Woo;Gupta, Ravi;Jo, Ick Hyun;Bang, Kyong Hwan;Kim, Young-Chang;Kim, Kee-Hong;Kim, Sun Tae
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.5
    • /
    • pp.398-404
    • /
    • 2014
  • Salt stress is one of the major abiotic stresses affecting the yield of ginseng (Panax ginseng C. A. Meyer). The objective of this study was to identify bio-marker, which is early responsive in salt stress in ginseng, using proteomics approach. Ginseng plants were exposed to 5 ds/m salt concentration and samples were harvested at 0, 6, 12 and 18 hours after exposure. Total proteins were extracted from ginseng leaves treated with salt stress using Mg/NP-40 buffer and were separated on high resolution 2-DE. Approximately $1003{\pm}240$ (0 h), $992{\pm}166$ (6 h), $1051{\pm}51$ (12 h) and $990{\pm}160$ (18 h) spots were detected in colloidal CBB stained 2D maps. Among these, 8 spots were differentially expressed and were identified by using MALDI-TOF/TOF MS or/and LC-MS/MS. Ethylene response sensor-1 (spot GL 1), nucleotide binding protein (spot GL 2), carbonic anhydrase-1 (spot GL 3), thylakoid lumenal 17.9 kDa protein (spot GL 4) and Chlorophyll a/b binding protein (spot GL 5, GL 6) were up-regulated at the 12 and 18 hour, while RuBisCO activase B (spot GL 7) and DNA helicase (spot GL 8) were down-regulated. Thus, we suggest that these proteins might participate in the early response to salt stress in ginseng leaves.

Clinical Study on the Floating and Sinking Pulse Detection with Piezoresistive Sensors and Contact Pressure Control Robot (압저항 센서와 가압조절 로봇을 이용한 부침맥 검출에 관한 임상연구)

  • Lee Si-Woo;Lee Yu-Jung;Lee Hae-Jung;Kang Hee-Jung;Kim Jong-Yeol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.6
    • /
    • pp.1673-1675
    • /
    • 2005
  • The pulse diagnosis is an important and universal method in Oriental medicine. Nevertheless, because of characteristic that depends on subjective sense of Oriental medicine doctor (OMD), it is not recognized by objective basis. The Korean Institute of Oriental Medicine(KIOM) and Daeyo Medi. Co. Ltd. developed the 3-D Mac using arrey piezoresistive sensors and multi-axial robot. 133 healthy subjects participated in this study, 75 males and 58 females, between 20 and 70 years of age. All subjects were relaxed in a supine position on a comfortable chair for twenty minutes before the measurement was taken. The measured position is the radial artery of subject's left wrist and the position is called Chon, Kwan and Chuck in Oriental medicine. To detect floating and sinking pulse, we established coefficient of floating and sinking(CFS). CFS means relative position of maximum pulse pressure in PH curve. The lower CFS value means that the pulse has floating tendency. There was significant diffence between CFS and diagnosis of floating-sinking pulse by OMD(p=0.020). CFS value of over 40's group was significantly larger than those of 20's and 30's(p=0.000). There was no significant difference between male and female(p=0.061).

A Real-time Augmented Video System using Chroma-Pattern Tracking (색상패턴 추적을 이용한 실시간 증강영상 시스템)

  • 박성춘;남승진;오주현;박창섭
    • Journal of Broadcast Engineering
    • /
    • v.7 no.1
    • /
    • pp.2-9
    • /
    • 2002
  • Recently. VR( Virtual Reality) applications such as virtual studio and virtual character are wifely used In TV programs. and AR( Augmented Reality) applications are also belong taken an interest increasingly. This paper introduces a virtual screen system. which Is a new AR application for broadcasting. The virtual screen system is a real-time video augmentation system by tracking a chroma-patterned moving panel. We haute recently developed a virtual screen system.'K-vision'. Our system enables the user to hold and morse a simple panel on which live video, pictures of 3D graphics images can appear. All the Images seen on the panel change In the correct perspective, according to movements of the camera and the user holding the panel, in real-time. For the purpose of tracking janet. we use some computer vision techniques such as blob analysis and feature tracking. K-vision can work well with any type of camera. requiring no special add-ons. And no need for sensor attachments to the panel. no calibration procedures required. We are using K-vision in some TV programs such as election. documentary and entertainment.

Thermocompression bonding for wafer level hermetic packaging of RF-MEMS devices (RF-MEMS 소자의 웨이퍼 레벨 밀봉 패키징을 위한 열압축 본딩)

  • Park, Gil-Soo;Seo, Sang-Won;Choi, Woo-Beom;Kim, Jin-Sang;Nahm, Sahn;Lee, Jong-Heun;Ju, Byeong-Kwon
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.58-64
    • /
    • 2006
  • In this study, we describe a low-temperature wafer-level thermocompression bonding using electroplated gold seal line and bonding pads by electroplating method for RF-MEMS devices. Silicon wafers, electroplated with gold (Au), were completely bonded at $320^{\circ}C$ for 30 min at a pressure of 2.5 MPa. The through-hole interconnection between the packaged devices and external terminal did not need metal filling process and was made by gold films deposited on the sidewall of the throughhole. This process was low-cost and short in duration. Helium leak rate, which is measured to evaluate the reliability of bonded wafers, was $2.7{\pm}0.614{\times}10^{-10}Pam^{3}/s$. The insertion loss of the CPW packaged was $-0.069{\sim}-0.085\;dB$. The difference of the insertion loss between the unpackaged and packaged CPW was less than -0.03. These values show very good RF characteristics of the packaging. Therefore, gold thermocompression bonding can be applied to high quality hermetic wafer level packaging of RF-MEMS devices.

A Study on Control of Drone Swarms Using Depth Camera (Depth 카메라를 사용한 군집 드론의 제어에 대한 연구)

  • Lee, Seong-Ho;Kim, Dong-Han;Han, Kyong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.8
    • /
    • pp.1080-1088
    • /
    • 2018
  • General methods of controlling a drone are divided into manual control and automatic control, which means a drone moves along the route. In case of manual control, a man should be able to figure out the location and status of a drone and have a controller to control it remotely. When people control a drone, they collect information about the location and position of a drone with the eyes and have its internal information such as the battery voltage and atmospheric pressure delivered through telemetry. They make a decision about the movement of a drone based on the gathered information and control it with a radio device. The automatic control method of a drone finding its route itself is not much different from manual control by man. The information about the position of a drone is collected with the gyro and accelerator sensor, and the internal information is delivered to the CPU digitally. The location information of a drone is collected with GPS, atmospheric pressure sensors, camera sensors, and ultrasound sensors. This paper presents an investigation into drone control by a remote computer. Instead of using the automatic control function of a drone, this approach involves a computer observing a drone, determining its movement based on the observation results, and controlling it with a radio device. The computer with a Depth camera collects information, makes a decision, and controls a drone in a similar way to human beings, which makes it applicable to various fields. Its usability is enhanced further since it can control common commercial drones instead of specially manufactured drones for swarm flight. It can also be used to prevent drones clashing each other, control access to a drone, and control drones with no permit.

Long Distance and High Resolution Three-Dimensional Scanning LIDAR with Coded Laser Pulse Waves (레이저 펄스 부호화를 이용한 원거리 고해상도 3D 스캐닝 라이다)

  • Kim, Gunzung;Park, Yongwan
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.4
    • /
    • pp.133-142
    • /
    • 2016
  • This paper presents the design and simulation of a three-dimensional pixel-by-pixel scanning light detection and ranging (LIDAR) system with a microelectromechanical system (MEMS) scanning mirror and direct sequence optical code division multiple access (DS-OCDMA) techniques. It measures a frame with $848{\times}480$ pixels at a refresh rate of 60 fps. The emitted laser pulse waves of each pixel are coded with DS-OCDMA techniques. The coded laser pulse waves include the pixel's position in the frame, and a checksum. The LIDAR emits the coded laser pulse waves periodically, without idle listening time to receive returning light at the receiver. The MEMS scanning mirror is used to deflect and steer the coded laser pulse waves to a specific target point. When all the pixels in a frame have been processed, the travel time is used by the pixel-by-pixel scanning LIDAR to generate point cloud data as the measured result.

Fundamental Relationship between Reduction Rates of Stretch Fabrics and Clothing Pressure (신축성 원단의 축소율과 의복압에 대한 기초 연구)

  • Jeong, Yeon-Hee
    • Korean Journal of Human Ecology
    • /
    • v.17 no.5
    • /
    • pp.963-973
    • /
    • 2008
  • Clothing pressure is closely connected with the degree of comfort of an athlete's tight-fitting garments. Therefore, the construction of sports garments is very important to the wearer's athletic performance. In this study, the fundamental relationship between the reduction rates of stretch fabrics and clothing pressure was explored with the aim of improving clothing comfort and obtaining a systematic pattern reduction for women's tight-fitting bodysuits. A women's bodysuit pattern was obtained by the draping method using a dressform. The basic pattern was divided into four parts and changed into reduced pattems according to the amount of fabric stretch determined by ASTM D2594. Clothing pressure was measured using an air-pack-type pressure sensor (model AMI 3037-2) at 20 locations (shoulder, 9 locations; bust, 5; and armhole, 6). Among the 15 garments tested, the mean pressure of the A1 bodysuit was 4.60 $gf/cm^2$, and that of the C5 bodysuit was 22.98 $gf/cm^2$. The mean pressures of the bodysuits with reduction rates of 10% and 20% were below 10 $gf/cm^2$, while those of suits with reduction rates of 30%,40%, and 50% (except C5) were below 20 $gf/cm^2$. The pressure at the shoulder was 9.50$\sim$32.24 $gf/cm^2$, which was higher than that at the bust (3.34$\sim$24.56 $gf/cm^2$) and the armhole (0.95$\sim$12.15 $gf/cm^2$). The mean pressures of the 15 bodysuits were divided into five groups using analysis of variance (ANOVA), and were found to be significantly different (p<0.001). Regression analysis afforded the following expression: mean pressure ($gf/cm^2$) = 1.607 + 0.369[reduction rate (%)].

Development of An Apparatus to Control Odorous Stimuli for Olfactory Evoked Responses

  • Min, Byung-Chan;Chung, S.C.;Min, S.W.;Kim, S.K.;Park, S.J.;Kim, C.J.;Shin, J.S.;Kim, J.S.;Lee, D.H.;Sakamoto, K.
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.53
    • /
    • pp.69-78
    • /
    • 1999
  • We developed an apparatus for odorous stimuli control to record olfactory evoked potentials from human scalp. The characteristics of the apparatus were as follows. 1. Translating the subjects respiration into electric signals with a sensor attached to the nose. The period and timing of odorous stimuli could be adjusted, so that stimuli could be synchronous with respiration. 2. The respirations translated into electric signals were made constant in amplitude by using an auto gain control circuit. 3. The interstimulus interval of odorous could be arbitrarily selected once every 1 to 9 respirations so that adaptation could be prevented. We obtained olfactory - evoked potentials (OEPs) to odorous stimuli using this apparatus from the site of Cz, whose positive peak latencies were approximately $180{\pm}23ms$. Such response were not recorded if oxygen stimuli were used instead of odorous or with click sounds produced by the switching electromagnetic valve.

  • PDF

Zero Torque Control of Switched Reluctance Motor for Integral Charging (충전기 겸용 스위치드 릴럭턴스 전동기의 제로토크제어)

  • Rashidi, A.;Namazi, M.M;Saghaian, S.M.;Lee, D.H.;Ahn, J.W.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.328-338
    • /
    • 2017
  • In this paper, a zero torque control scheme adopting current sharing function (CSF) used in integrated Switched Reluctance Motor (SRM) drive with DC battery charger is proposed. The proposed control scheme is able to achieve the keeping position (KP), zero torque (ZT) and power factor correction (PFC) at the same time with a simple novel current sharing function algorithm. The proposed CSF makes the proper reference for each phase windings of SRM to satisfy the total charging current of the battery with zero torque output to hold still position with power factor correction, and the copper loss minimization during of battery charging is also achieved during this process. Based on these, CSFs can be used without any recalculation of the optimal current at every sampling time. In this proposed integrated battery charger system, the cost effective, volume and weight reduction and power enlargement is realized by function multiplexing of the motor winding and asymmetric SR converter. By using the phase winding as large inductors for charging process, and taking the asymmetric SR converter as an interleaved converter with boost mode operation, the EV can be charged effectively and successfully with minimum integral system. In this integral system, there is a position sliding mode controller used to overcome any uncertainty such as mutual inductance or DC offset current sensor. Power factor correction and voltage adaption are obtained with three-phase buck type converter (or current source rectifier) that is cascaded with conventional SRM, one for wide input and output voltage range. The practicability is validated by the simulation and experimental results by using a laboratory 3-hp SRM setup based on TI TMS320F28335 platform.

Improvement of Land Cover / Land Use Classification by Combination of Optical and Microwave Remote Sensing Data

  • Duong, Nguyen Dinh
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.426-428
    • /
    • 2003
  • Optical and microwave remote sensing data have been widely used in land cover and land use classification. Thanks to the spectral absorption characteristics of ground object in visible and near infrared region, optical data enables to extract different land cover types according to their material composition like water body, vegetation cover or bare land. On the other hand, microwave sensor receives backscatter radiance which contains information on surface roughness, object density and their 3-D structure that are very important complementary information to interpret land use and land cover. Separate use of these data have brought many successful results in practice. However, the accuracy of the land use / land cover established by this methodology still has some problems. One of the way to improve accuracy of the land use / land cover classification is just combination of both optical and microwave data in analysis. In this paper for the research, the author used LANDSAT TM scene 127/45 acquired on October 21, 1992, JERS-1 SAR scene 119/265 acquired on October 27, 1992 and aerial photographs taken on October 21, 1992. The study area has been selected in Hanoi City and surrounding area, Vietnam. This is a flat agricultural area with various land use types as water rice, secondary crops like maize, cassava, vegetables cultivation as cucumber, tomato etc. mixed with human settlement and some manufacture facilities as brick and ceramic factories. The use of only optical or microwave data could result in misclassification among some land use features as settlement and vegetables cultivation using frame stages. By combination of multitemporal JERS-1 SAR and TM data these errors have been eliminated so that accuracy of the final land use / land cover map has been improved. The paper describes a methodology for data combination and presents results achieved by the proposed approach.

  • PDF