• Title/Summary/Keyword: 3D reconstructed CT

Search Result 138, Processing Time 0.024 seconds

Shape-based Interpolation Algorithm of CT Image (CT영상의 형태에 의한 보간 알고리즘)

  • 유선국;김원기
    • Journal of Biomedical Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.71-74
    • /
    • 1990
  • In the medical modalities, three-dimensional objects must be reconstructed from the consecutive slices. but the slime separation is usually much greater than the pixel size within an individual slices. In this paper, an interpolation scheme for filling the spare between the shapes in two successive slices is developed. It minimizes the computation involvement in segmentation of 3-D reconst ructlon process as well as more accurately approximates the object than the linear interpolation method.

  • PDF

Dosimetric Effects of Low Dose 4D CT Using a Commercial Iterative Reconstruction on Dose Calculation in Radiation Treatment Planning: A Phantom Study

  • Kim, Hee Jung;Park, Sung Yong;Park, Young Hee;Chang, Ah Ram
    • Progress in Medical Physics
    • /
    • v.28 no.1
    • /
    • pp.27-32
    • /
    • 2017
  • We investigated the effect of a commercial iterative reconstruction technique (iDose, Philips) on the image quality and the dose calculation for the treatment plan. Using the electron density phantom, the 3D CT images with five different protocols (50, 100, 200, 350 and 400 mAs) were obtained. Additionally, the acquired data was reconstructed using the iDose with level 5. A lung phantom was used to acquire the 4D CT with the default protocol as a reference and the low dose (one third of the default protocol) 4D CT using the iDose for the spine and lung plans. When applying the iDose at the same mAs, the mean HU value was changed up to 85 HU. Although the 1 SD was increased with reducing the CT dose, it was decreased up to 4 HU due to the use of iDose. When using the low dose 4D CT with iDose, the dose change relative to the reference was less than 0.5% for the target and OARs in the spine plan. It was also less than 1.1% in the lung plan. Therefore, our results suggests that this dose reduction technique is applicable to the 4D CT image acquisition for the radiation treatment planning.

Usefulness of Three-Dimensional CT Image in Meningioma Using Contrast Method (조영법을 이용한 뇌수막종에서 3차원 CT영상의 유용성)

  • Lee, Jun-Haeng;Baek, Sung-Eun;Lee, Sang-Bock;Kim, Yong-Wan
    • Journal of the Korean Society of Radiology
    • /
    • v.2 no.1
    • /
    • pp.17-21
    • /
    • 2008
  • Because of the reason that the meningioma is enhanced lately, we started the study to maximally enhance the meningioma. we were to know the relation between meningioma and vessels in the skull and compared 3D CT angiography with the conventional angiography. we got the data from 6 patients performed by both 3D CT angiography and there were 5 cases in sphenoidal ridge and 1 case parasagittal sinus. Injecting the contrast media at 3 ml/sec, 120 ml and then the CT number reached 100, we started the study using the medical system Program(smart prep). The scan parameters were HS-Mode(1.25 mm / 7.5 mm) right after being injected all and reconstructed with 0.5 mm interval. We compared the study with the conventional angiography after reconstructing the images required by using 3D-Med software Program(Rapidia). Seeing the consequences, the maximum enhancing time in the menigioma is about 120~180 seconds after injecting the contrast media and we distinguished the relation between vessels and tumors at the time and 1 case showed us the aneurysm with a tumor clearly at the time too. It was very helpful to the operation that the 3D images required by injecting the contrast media to the patients with meningioma distingushed between tumors and vessels dimensionally.

  • PDF

The Correlation Study of the Occurrence of Blooming Artifact according to Dilution Ratio of Contrast Media in CT Angiography (CT Angiography 영상에서 조영제 희석비율에 따른 Blooming Artifact 발생의 상관성 연구)

  • Lee, Su-Seong;Baek, Se-Jun;Seok, Jeong-Yeon;Ryu, Dae-Yeon;Kim, Seong-Jin;Heo, Yeong-Cheol
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.1
    • /
    • pp.61-68
    • /
    • 2020
  • The purpose of this study is to investigate the correlation of blooming artifacts according to dilution ratio of contrast agent on CT angiography images. A total of 10 sets were prepared by differently setting the ratio of contrast media and saline in a ball phantom made by a 3D printer. CT scan images were obtained and reconstructed by MIP and MPR techniques to obtain axial, sagittal and coronal images, respectively. After, the diameter of the ball phantom of the image obtained after the test was measured each 30 times, a total 1800 times. As a result, the dilution of 20:80 in the coronal plane was the smallest (p<0.05). Similarly, when dilute to 20:80 in the sagittal plane of MIP, it was the smallest as 20.39 ± 0.08 mm (p<0.05). Correlation analysis between dilution ratio and measurement size confirmed strong negative correlations in all reconstructed images (p<0.05). In conclusion, the higher the dilution ratio of the contrast agent, the more difficult it is to measure actual blood vessel measurement. Therefore, this study may provide basic data in future studies on actual measurement.

Quantitative Measurements of 3-D Imaging with Computed Tomography using Human Skull Phantom

  • Kim, Dong-Wook;Kim, Hee-Joung;Haijo Jung;Soonil Hong;Yoo, Young-Il;Kim, Dong-Hyeon;Kim, Kee-Deog
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.506-508
    • /
    • 2002
  • As an advancement of medical imaging modalities and analyzing software with multi-function, active researches to acquire high contrast and high resolution image being done. In recently, development of medical imaging modalities like as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) is aiming to display anatomical structure more accuracy and faster. Thus, one of the important areas in CT today is the use of CT scanner for the quantitative evaluation of 3-D reconstruction images from 2-D tomographic images. In CT system, the effective slice thickness and the quality of 3-D reconstructed image will be influenced by imaging acquisition parameters (e.g. pitch and scan mode). In diagnosis and surgical planning, the accurate distance measurements of 3-D anatomical structures play an important role and the accuracy of distance measurements will depend on the acquisition parameters such as slice thickness, pitch, and scan mode. The skull phantom was scanned with SDCT for various acquisition parameters and acquisition slice thicknesses were 3 and 5 mm, and reconstruction intervals were 1, 2, and 3 mm to each pitch. 3-D visualizations and distance measurements were performed with PC based 3-D rendering and analyzing software. Results showed that the image quality and the measurement accuracy of 3-D SDCT images are independent to the reconstruction intervals and pitches.

  • PDF

Evaluation of accuracy of 3D reconstruction images using multi-detector CT and cone-beam CT

  • Kim, Mi-Ja;Huh, Kyung-Hoe;YI, Won-Jin;Heo, Min-Suk;Lee, Sam-Sun;Choi, Soon-Chul
    • Imaging Science in Dentistry
    • /
    • v.42 no.1
    • /
    • pp.25-33
    • /
    • 2012
  • Purpose : This study was performed to determine the accuracy of linear measurements on three-dimensional (3D) images using multi-detector computed tomography (MDCT) and cone-beam computed tomography (CBCT). Materials and Methods : MDCT and CBCT were performed using 24 dry skulls. Twenty-one measurements were taken on the dry skulls using digital caliper. Both types of CT data were imported into OnDemand software and identification of landmarks on the 3D surface rendering images and calculation of linear measurements were performed. Reproducibility of the measurements was assessed using repeated measures ANOVA and ICC, and the measurements were statistically compared using a Student t-test. Results : All assessments under the direct measurement and image-based measurements on the 3D CT surface rendering images using MDCT and CBCT showed no statistically difference under the ICC examination. The measurements showed no differences between the direct measurements of dry skull and the image-based measurements on the 3D CT surface rendering images (P>.05). Conclusion : Three-dimensional reconstructed surface rendering images using MDCT and CBCT would be appropriate for 3D measurements.

Biomechanical Evaluation of Cement type hip Implants as Conditions of bone Cement and Variations of Stem Design (골시멘트 특성 및 스템 형상에 따른 시멘트 타입 인공관절의 생체역학적 평가)

  • Park, H.S.;Chun, H.J.;Youn, I.C.;Lee, M.K.;Choi, K.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.3
    • /
    • pp.212-221
    • /
    • 2008
  • The total hip replacement (THR) has been used as the most effective way to restore the function of damaged hip joint. However, various factors have caused some side effects after the THR. Unfortunately, the success of the THR have been decided only by the proficiency of surgeons so far. Hence, It is necessary to find the way to minimize the side effect caused by those factors. The purpose of this study was to suggest the definite data, which can be used to design and choose the optimal hip implant. Using finite element analysis (FEA), the biomechanical condition of bone cement was evaluated. Stress patterns were analyzed in three conditions: cement mantle, procimal femur and stem-cement contact surface. Additionally, micro-motion was analyzed in the stem-cement contact surface. The 3-D femur model was reconstructed from 2-D computerized tomography (CT) images. Raw CT images were preprocessed by image processing technique (i.e. edge detection). In this study, automated edge detection system was created by MATLAB coding for effective and rapid image processing. The 3-D femur model was reconstructed based on anatomical parameters. The stem shape was designed using that parameters. The analysis of the finite element models was performed with the variation of parameters. The biomechanical influence of each parameter was analyzed and derived optimal parameters. Moreover, the results of FE A using commercial stem model (Zimmer's V erSys) were similar to the results of stem model that was used in this study. Through the study, the improved designs and optimal factors for clinical application were suggested. We expect that the results can suggest solutions to minimize various side effects.

Accuracy Analysis of Magnetic Resonance Angiography and Computed Tomography Angiography Using a Flow Experimental Model

  • Heo, Yeong-Cheol;Lee, Hae-Kag;Park, Cheol-Soo;Cho, Jae-Hwan
    • Journal of Magnetics
    • /
    • v.20 no.1
    • /
    • pp.40-46
    • /
    • 2015
  • This study investigated the accuracy of magnetic resonance angiography (MRA) and computed tomography angiography (CTA) in terms of reflecting the actual vascular length. Three-dimensional time of flight (3D TOF) MRA, 3D contrast-enhanced (CE) MRA, volume-rendering after CTA and maximum intensity projection were investigated using a flow model phantom with a diameter of 2.11 mm and area of $0.26cm^2$. 1.5 and 3.0 Tesla devices were used for 3D TOF MRA and 3D CE MRA. CTA was investigated using 16 and 64 channel CT scanners, and the images were transmitted and reconstructed by volume-rendering and maximum intensity projection, followed by conduit length measurement as described above. The smallest 3D TOF MRA measure was $2.51{\pm}0.12mm$ with a flow velocity of 40 cm/s using the 3.0 Tesla apparatus, and $2.57{\pm}0.07mm$ with a velocity of 71.5 cm/s using the 1.5 Tesla apparatus; both images were magnified from the actual measurement of 2.11 mm. The measurement with the 16 channel CT scanner was smaller ($3.83{\pm}0.37mm$) than the reconstructed image on maximum intensity projection. The images from CTA from examination apparatus and reconstruction technique were all larger than the actual measurement.

3-D Conformal Radiotherapy for CNS Using CT Simulation (입체조준장치를 이용한 중추신경계의 방사선 입체조형치료 계획)

  • 추성실;조광환;이창걸
    • Progress in Medical Physics
    • /
    • v.14 no.2
    • /
    • pp.90-98
    • /
    • 2003
  • Purpose : A new virtual simulation technique for craniospinal irradiation (CSI) that uses a CT-simulator was developed to improve the accuracy of field and shielding placement as well as patient positioning. Materials and Methods : A CT simulator (CT-SIM) and a 3-D conformal radiation treatment planning system (3D-CRT) were used to develop CSI. The head and neck were immobilized with a thermoplastic mask while the rest of the body was immobilized with a Vac-Loc. A volumetric image was then obtained with the CT simulator. In order to improve the reproducibility of the setup, datum lines and points were marked on the head and body. Virtual fluoroscopy was performed with the removal of visual obstacles, such as the treatment table or immobilization devices. After virtual simulation, the treatment isocenters of each field were marked on the body and on the immobilization devices at the conventional simulation room. Each treatment fields was confirmed by comparing the fluoroscopy images with the digitally reconstructed radiography (DRR) and digitally composited radiography (DCR) images from virtual simulation. Port verification films from the first treatment were also compared with the DRR/DCR images for geometric verification. Results : We successfully performed virtual simulations on 11 CSI patients by CT-SIM. It took less than 20 minutes to affix the immobilization devices and to obtain the volumetric images of the entire body. In the absence of the patient, virtual simulation of all fields took 20 min. The DRRs were in agreement with simulation films to within 5 mm. This not only reducee inconveniences to the patients, but also eliminated position-shift variables attendant during the long conventional simulation process. In addition, by obtaining CT volumetric image, critical organs, such as the eyes and the spinal cord, were better defined, and the accuracy of the port designs and shielding was improved. Differences between the DRRs and the portal films were less than 3 m in the vertebral contour. Conclusion : Our analysis showed that CT simulation of craniospinal fields was accurate. In addition, CT simulation reduced the duration of the patient's immobility. During the planning process. This technique can improve accuracy in field placement and shielding by using three-dimensional CT-aided localization of critical and target structures. Overall, it has improved staff efficiency and resource utilization by standard protocol for craniospinal irradiation.

  • PDF

Reproducibilities of cephalometric measurements of three-dimensional CT images reconstructed in the personal computer (개인용 컴퓨터에서 재구성한 3차원 전산화단층영상의 두부계측 재현성)

  • Jeon Kug-Jin;Park Hyok;Lee Hee-Cheol;Kim Kee-Deog;Park Chang-Seo
    • Imaging Science in Dentistry
    • /
    • v.33 no.3
    • /
    • pp.171-178
    • /
    • 2003
  • Purpose: The purpose of this study was to report the reproducibility of intra-observer and inter-observer consistency of cephalometric measurements using three-dimensional (3D) computed tomography (CT), and the degree of difference of the cephalometric measurements. Materials and Methods: CT images of 16 adult patients with normal class I occlusion were sent to personal computer and reconstructed into 3D images using V-Works 3.5/sup TM/(Cybermed Inc., Seoul, Korea). With the internal program of V-Works 3.5/sup TM/, 12 landmarks on regular cephalograms were transformed into 21 analytic categories and measured by 2 observers and in addition, one of the observers repeated their measurements. Intra-observer difference was calculated using paired t-test, and inter-observer by two sample test. Results: There were significant differences in the intra-observer measurements (p < 0.05) in four of the categories which included ANS-Me, ANS-PNS, Cdl-Go (Lt), GoL-GoR, but with the exception of Cdl-Go (Lt), ZmL-ZmR, Zyo-Zyo, the average differences were within 2 mm of each other. The inter-observer observations also showed significant differences in the measurements of the ZmL-ZmR and Zyo-Zyo categories (p < 0.05). With the exception of the Cdl-Me (Rt), ZmL-ZmR, Zyo-Zyo categories, the average differences between the two observers were within 2 mm, but the ZmL-ZmR and Zyo-Zyo values differed greatly with values of 8.10 and 19.8 mm respectively. Conclusion: In general, 3D CT images showed greater accuracy and reproducibility, with the exception of suture areas such as Zm and Zyo, than regular cephalograms in orthodontic measurements, showing differences of less than 2 mm, therefore 3D CT images can be useful in cephalometric measurements and treatment planning.

  • PDF