• Title/Summary/Keyword: 3D range sensor

Search Result 237, Processing Time 0.03 seconds

Fused Deposition Modeling 3D Printing-based Flexible Bending Sensor (FDM 3D프린팅 기반 유연굽힘센서)

  • Lee, Sun Kon;Oh, Young Chan;Kim, Joo Hyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.63-71
    • /
    • 2020
  • Recently, to improve convenience, flexible electronics are quickly being developed for a number of application areas. Flexible electronic devices comprise characters such as being bendable, stretchable, foldable, and wearable. Effectively manufacturing flexible electronic devices requires high efficiency, low costs, and simple processes for manufacturing technology. Through this study, we enabled the rapid production of multifunctional flexible bending sensors using a simple, low-cost Fused Deposition Modeling (FDM) 3D printer. Furthermore, we demonstrated the possibility of the rapid production of a range of functional flexible bending sensors using a simple, low-cost FDM 3D printer. Accurate and reproducible functional materials made by FDM 3D printers are an effective tool for the fabrication of flexible sensor electronic devices. The 3D-printed flexible bending sensor consisted of polyurethane and a conductive filament. Two patterns of electrodes (straight and Hilbert curve) for the 3D printing flexible sensor were fabricated and analyzed for the characteristics of bending displacement. The experimental results showed that the straight curve electrode sensor sensing ability was superior to the Hilbert curve electrode sensor, and the electrical conductivity of the Hilbert curve electrode sensor is better than the straight curve electrode sensor. The results of this study will be very useful for the fabrication of various 3D-printed flexible sensor devices with multiple degrees of freedom that are not limited by size and shape.

Guidance of Mobile Robot for Inspection of Pipe (파이프 내부검사를 위한 이동로봇의 유도방법)

  • 정규원
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.480-485
    • /
    • 2002
  • The purpose of this paper is the development of guidance algorithm for a mobile robot which is used to acquire the position and state information of the pipe defects such as crack, damage and through hole. The data used for the algorithm is the range data obtained by the range sensor which is based on an optical triangulation method. The sensor, which consists of a laser slit beam and a CCD camera, measures the 3D profile of the pipe's inner surface. After setting the range sensor on the robot, the robot is put into a pipe. While the camera and the LSB sensor part is rotated about the robot axis, a laser slit beam (LSB) is projected onto the inner surface of the pipe and a CCD camera captures the image. From the images the range data is obtained with respect to the sensor coordinate through a series of image processing and applying the sensor matrix. After the data is transformed into the robot coordinate, the position and orientation of the robot should be obtained in order to guide the robot. In addition, analyzing the data, 3D shape of the pipe is constructed and the numerical data for the defects of the pipe can be found. These data will be used for pipe maintenance and service.

  • PDF

A Wide Dynamic Range CMOS Image Sensor Based on a Pseudo 3-Transistor Active Pixel Sensor Using Feedback Structure

  • Bae, Myunghan;Jo, Sung-Hyun;Lee, Minho;Kim, Ju-Yeong;Choi, Jinhyeon;Choi, Pyung;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.413-419
    • /
    • 2012
  • A dynamic range extension technique is proposed based on a 3-transistor active pixel sensor (APS) with gate/body-tied p-channel metal oxide semiconductor field effect transistor (PMOSFET)-type photodetector using a feedback structure. The new APS consists of a pseudo 3-transistor APS and an additional gate/body-tied PMOSFET-type photodetector, and to extend the dynamic range, an NMOSFET switch is proposed. An additional detector and an NMOSFET switch are integrated into the APS to provide negative feedback. The proposed APS and pseudo 3-transistor APS were designed and fabricated using a $0.35-{\mu}m$ 2-poly 4-metal standard complementary metal oxide semiconductor (CMOS) process. Afterwards, their optical responses were measured and characterized. Although the proposed pixel size increased in comparison with the pseudo 3-transistor APS, the proposed pixel had a significantly extended dynamic range of 98 dB compared to a pseudo 3-transistor APS, which had a dynamic range of 28 dB. We present a proposed pixel that can be switched between two operating modes depending on the transfer gate voltage. The proposed pixel can be switched between two operating modes depending on the transfer gate voltage: normal mode and WDR mode. We also present an imaging system using the proposed APS.

Automatic Registration Method for Multiple 3D Range Data Sets (다중 3차원 거리정보 데이타의 자동 정합 방법)

  • 김상훈;조청운;홍현기
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.12
    • /
    • pp.1239-1246
    • /
    • 2003
  • Registration is the process aligning the range data sets from different views in a common coordinate system. In order to achieve a complete 3D model, we need to refine the data sets after coarse registration. One of the most popular refinery techniques is the iterative closest point (ICP) algorithm, which starts with pre-estimated overlapping regions. This paper presents an improved ICP algorithm that can automatically register multiple 3D data sets from unknown viewpoints. The sensor projection that represents the mapping of the 3D data into its associated range image is used to determine the overlapping region of two range data sets. By combining ICP algorithm with the sensor projection constraint, we can make an automatic registration of multiple 3D sets without pre-procedures that are prone to errors and any mechanical positioning device or manual assistance. The experimental results showed better performance of the proposed method on a couple of 3D data sets than previous methods.

Analog to Digital Converter for CMOS Image Sensor (CMOS Image Sensor에 사용 가능한 아날로그/디지탈 변환)

  • 노주영;윤진한;장철상;손상희
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.137-140
    • /
    • 2002
  • This paper is proposed a 8-bit anolog to digital converter for CMOS image sensor. A anolog to digital converter for CMOS image sensor is required function to control gain. Proposed anolog to digital converter is used frequency divider to control gain. At 3.3 Volt power supply, total static power dissipation is 8mW and programmable gain control range is 30dB. The gain control range can be easily increased with insertion of additional flip-flop at divided-by-N frequency divider circuit.

  • PDF

A Mechanism Study of a HyperSpectral Image Sensor for Nadir and Slant Range Operation (직하방과 빗각 촬영 운용을 위한 초분광 영상센서 구동방식에 관한 연구)

  • Lee, Kyeongyeon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.484-491
    • /
    • 2019
  • General Hyperspectral Image Sensor acquires an image of line form such as a thin rectangle shape because of using 1D array Push Broom or Whisk Broom scanning method. A special mechanism is required for a Hyperspectral Image Sensor to operate for nadir and slant range. To design the mechanism, the characteristics of the flight motion and the overlap rate between consecutive frames were analyzed. Also, system requirements were proposed through modeling and simulation.

A Study on Pattern Analysis of Odorous Substances with a Single Gas Sensor

  • Kim, Han-Soo;Choi, Il-Hwan;Kim, Sun-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.423-430
    • /
    • 2016
  • This study used a single metal oxide semiconductor (MOS) sensor to classify the major odorous gases hydrogen sulfide ($H_2S$), ammonia ($NH_3$) and toluene ($C_6H_5CH_3$). In order to classify these odorous substances, the voltage on the MOS sensor heater was gradually reduced in 0.5 V steps 5.0 V to examine the changes to the response by the cooling effect on the sensor as the voltage decreased. The hydrogen sulfide gas showed the highest sensitivity compared to odorless air under approximately 2.5 V and the ammonia and toluene gases showed the highest sensitivity under approximately 5.0 V. In other words, the hydrogen sulfide gas reacted better in the low temperature range of the MOS sensor, and the ammonia and toluene gases reacted better in the high-temperature range. In order to analyze the response characteristics of the MOS sensor by temperature in a pattern, a two-dimensional (2D) x-y pattern analysis was introduced to clearly classify the hydrogen sulfide, ammonia, and toluene gases. The hydrogen sulfide gas was identified by a straight line with a slope of 1.73, whereas the ammonia gas had a slope of 0.05 and the toluene gas had a slope of 0.52. Therefore, the 2D x-y pattern analysis is suggested as a new way to classify these odorous substances.

The realization of 3D Display by using 2D sensor

  • Lee, Kyu-Tae;Um, Kee-Tae;Kim, Sang-Jo;Chae, Kyung-Pil
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.765-768
    • /
    • 2008
  • To make 3D camera system, we check the possibility of advanced range camera module based on measuring the time delay of modulated infrared light, using a single detector chip fabricated on standard CMOS process. To depth information, electronic shutter and interlaced scanning method of 2D sensor is needed. Especially, we design "lens system, illumination unit" and review simulation result.

  • PDF

Design of range measurement systems using a sonar and a camera (초음파 센서와 카메라를 이용한 거리측정 시스템 설계)

  • Moon, Chang-Soo;Do, Yong-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.116-124
    • /
    • 2005
  • In this paper range measurement systems are designed using an ultrasonic sensor and a camera. An ultrasonic sensor provides the range measurement to a target quickly and simply but its low resolution is a disadvantage. We tackle this problem by employing a camera. Instead using a stereoscopic sensor, which is widely used for 3D sensing but requires a computationally intensive stereo matching, the range is measured by focusing and structured lighting. In focusing a straightforward focusing measure named as MMDH(min-max difference in histogram) is proposed and compared with existing techniques. In the method of structure lighting, light stripes projected by a beam projector are used. Compared to those using a laser beam projector, the designed system can be constructed easily in a low-budget. The system equation is derived by analysing the sensor geometry. A sensing scenario using the systems designed is in two steps. First, when better accuracy is required, measurements by ultrasonic sensing and focusing of a camera are fused by MLE(maximum likelihood estimation). Second, when the target is in a range of particular interest, a range map of the target scene is obtained by using structured lighting technique. The systems designed showed measurement accuracy up to 0.3[mm] approximately in experiments.