• 제목/요약/키워드: 3D printing test method

검색결과 72건 처리시간 0.022초

DLP방식의 치과용 3D프린팅 임시치아 소재의 기계적 특성 (Mechanical Properties of DLP-type Dental 3D Printing Temporary Tooth Material)

  • 정효경;이승희;정효경
    • 한국산업융합학회 논문집
    • /
    • 제24권3호
    • /
    • pp.373-376
    • /
    • 2021
  • Tested the flexural strength and maximum load of two types of dental 3 D printed temporary tooth materials of the DLP method. The average flexural strength was 206.98 MPa in the test group and 139.77 MPa in the control group. The average flexural strength of the experimental group was 67.21 MPa higher than that of the control group. In the maximum load experiment, an average of 44.16N in the experimental group and 37.31N in the control group were measured. The average value of 6.85N was higher in the experimental group, and the durability of the artificial tooth restoration was improved.

적층가공 특화설계기법을 이용한 스페이스 프레임 차체 노드 부품 개발 (Node Part Development of Vehicle Body with Space Frame Using Design Technology for Additive Manufacturing)

  • 양민석;장진석;김다혜;성지현;김정태;조영철;이재욱
    • 한국기계가공학회지
    • /
    • 제19권5호
    • /
    • pp.45-52
    • /
    • 2020
  • Recently, design for additive manufacturing (DfAM) technology has become a prominent design methodology for exploiting 3D printing, which leads the Fourth Industrial Revolution. When manufactured by the 3D printing method, it is possible to produce several shapes compared to the conventional casting or cutting process. DfAM-as a newly-proposed design methodology-can be used to specially design products with various shapes to apply functional requirements. Topology optimization verifies load paths to determine the draft design, and a shape-optimized design with objective functions for weight reduction enables efficient lightweight product design. In this study, by using these two DfAM technologies, a lightweight and optimal design is constructed for a node part of a vehicle body with a space frame designed for a lightweight vehicle. DfAM methodologies for concept design and detailed design, and the associated results, are presented. Finally, the product was additively manufactured, a fatigue performance test was performed, and the design reliability was verified.

Vacuum In-line Sealing Technology of the Screen-printed CNT-FEA

  • Kwon, Sang-Jik;Kim, Tae-Ho;Shon, Byeong-Kyoo;Cho, Euo-Sik;Lee, Jong-Duk;Uh, Hyung-Soo;Cho, Sung-Hee;Lee, Chun-Gyoo
    • Journal of Information Display
    • /
    • 제4권3호
    • /
    • pp.6-11
    • /
    • 2003
  • We have fabricated a carbon nanotube field emission display (CNT-FED) panel with a 2-inch diagonal size by using a screen printing method and vacuum in-line sealing technology. The sealing temperature of the panel was around 390$^{\circ}C$ and the vacuum level was obtained with 1.4x$10^{-5}$torr at the sealing. When the field emission properties of a fabricated and sealed CNT-FED panel were characterized and compared with those of the unsealed panel which was located in a test chamber of vacuum level similar with the sealed panel. As a result, the sealed panel showed similar I-V characteristics with unsealed one and uniform light emission with very high brightness at a current density of 243 ${\mu}A/cm^2$, obtained at the electric field of 10 V/${\mu}m$.

3D 프린터용 시멘트 복합체의 배합요인에 따른 출력 품질의 실험적 평가 (Experimental Evaluation of the Effect of the Mixing Design Factors of the Cementitious Composite for 3D Printer on the Printing Quality)

  • 서지석;김윤용
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제26권1호
    • /
    • pp.89-96
    • /
    • 2022
  • 이 논문에서는 건설용 ME 방식 3D 프린터로 출력하기 위한 시멘트 복합체 배합의 출력품질을 평가하기 위해 출력 외관의 육안검사와 출력물의 치수 오차율, 압축강도 및 휨강도를 측정하였다. 시험결과, 출력 불연속 정도, 표면 무결성, 형태 유지능력, 출력가능 여부와 같은 4개 지표를 모두 만족하는 우수한 배합은 P1-2, P1-4, P2-5, P2-6으로 나타났다. 3개 지표를 만족하는 배합은 P0-1, P1-1, P1-3, P1-6, P1-7, P2-4으로 나타났다. 이 배합 중 오차율 측정용 중공 원주형 공시체의 직경 치수 오차율과 높이 치수율이 낮은 배합은 P0-1, P2-6로 나타났다. 치수 오차율이 우수한 배합과 그렇지 않은 배합의 압축강도 및 휨강도를 평가한 결과 출력 품질이 우수한 배합의 역학적 특성이 우수한 것으로 나타났다. 그러나, 역학적 특성이 우수한 배합이 반드시 출력 품질이 우수한 것은 아니기 때문에 정확한 품질평가를 위해서는 출력 외관에 대한 육안검사와 치수 오차율 검사를 선행하여 역학적 특성을 검토해야 할 것으로 판단된다.

3D 프린트를 활용한 자기공명영상검사 보조기구 제작 (Making Aids of Magnetic Resonacnce Image Susing 3D Printing Technology)

  • 최우전;예수영;김동현
    • 한국방사선학회논문지
    • /
    • 제10권6호
    • /
    • pp.403-409
    • /
    • 2016
  • MRI검사는 조직의 대조도가 우수하여 근골격계 진단에 유용한 검사방법이다. 근골격계 검사 시 환자상태에 따라 보조기구가 이용되는 보조기구의 종류가 다양하지 않을 뿐 아니라 비용도 비싸다. 이에 본 연구는 3D 프린팅 기술의 활용하여 MRI 검사 보조기구를 제작하였다. 보조기구 제작과정으로는 3D 모델링(3D MAX.2014, Fusion360)을 사용해 STL파일로 변환 후 슬라이싱 프로그램(Cubicreater 2.1ver., Cura 15.4ver)을 통해 G-code로 변환시킨 후 FDM방식의 프린트(Cubicon Style, MICRO MAKE)로 출력하였다. 출력물이 MRI영상에 미치는 SNR을 평가하기 위해 FDM에서 사용하되는 PLA, ABS, TPU를 두께 3mm로 된 Water Phantom 케이스를 제작하여 case 사용 전, 후를 시험을 실시하여 비교하였으며, 보조기구 사용 전, 후의 임상영상을 정성적으로 평가 하였다. 영상을 획득하여 나타난 Warter Phantom의 SNR은 T1 NON $123.778{\pm}28.492$, PLA $123.522{\pm}28.373$, ABS $124.461{\pm}25.716$, TPU $124.843{\pm}27.272$ 로 평가되었다. T2 NON $127.421{\pm}26.949$, PLA $124.501{\pm}2 7.768$, ABS $128.663{\pm}26.549$, TPU $130.171{\pm}25.998$ 로 평가되었다. 그 결과 통계 적으로 유의미한 차이를 보이지 않았다. 보조기구의 사용 전, 후의 임상영상 평가 결과 고식적 방법 $3.20{\pm}0.88$, 보조기구 사용 $3.95{\pm}0.76$ 으로 보조기구 사용 후 영상의 질이 향상되었다. 향후 3D프린팅을 이용한 보조기구의 제작은 임상적으로 사용이 가능할 것으로 생각되고, 환자들의 검사 시 보다 안전하고 편안한 보조기구제작을 할 수 있어 기존에 쓰이는 보조기구의 문제점들을 개선하는 대안이 될 것으로 전망된다.

Assessment of effect of accelerated aging on interim fixed dental materials using digital technologies

  • Omar, Alageel;Omar, Alsadon;Haitham, Almansour;Abdullah, Alshehri;Fares, Alhabbad;Majed, Alsarani
    • The Journal of Advanced Prosthodontics
    • /
    • 제14권6호
    • /
    • pp.360-368
    • /
    • 2022
  • PURPOSE. This study assessed the physical and mechanical properties of interim crown materials fabricated using various digital techniques after accelerated aging. MATERIALS AND METHODS. Three groups of interim dental restorative materials (N = 20) were tested. The first group (CO) was fabricated using a conventional manual method. The second group (ML) was prepared from prefabricated resin blocks for the milling method and cut into specimen sizes using a cutting disc. The third group (3D) was additively manufactured using a digital light-processing (DLP) 3D printer. Aging acceleration treatments using toothbrushing and thermocycling simulators were applied to half of the specimens corresponding to three years of usage in the oral environment (N = 10). Surface roughness (Ra), Vickers microhardness, 3-point bending, sorption, and solubility tests were performed. A 2-way analysis of variance (ANOVA) and Fisher's multiple comparison test were used to compare the results among the groups. RESULTS. The mean surface roughness (Ra) of the resin after accelerated aging was significantly higher in the CO and ML groups than that before aging, but not in the 3D group. All groups showed reduced hardness after accelerated aging. The flexural strength values were highest in the 3D group, followed by the ML and CO groups after accelerated aging. Accelerated aging significantly reduced water sorption in the ML group. CONCLUSION. According to the tested material and 3D printer type, both 3D-printed and milled interim restoration resins showed higher flexural strength and modulus, and lower surface roughness than those prepared by the conventional method after accelerated aging.

등방 파괴 강도를 갖는 캡슐 설계 및 제작 (Design and fabrication of capsules with isotropic destruction intensity)

  • 임태욱;성호;호걸;왕수러;정원석
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 봄 학술논문 발표대회
    • /
    • pp.247-248
    • /
    • 2022
  • 3D printer-based self-healing capsules have been proposed to heal cracks by enabling various structural designs, repeatable fabrication, and strength analysis of the capsules. The Fusion Deposition Modeling (FDM) method was used to design, analyze, and produce new self-healing capsules that are widely used at low cost. However, PLA extruded from FDM has low interlayer adhesion energy, and thus strength varies depending on the angle of load applied to the laminated layer and the concrete structure, thereby degrading the performance of the self-healing capsule. Therefore, in this paper, the structure of the capsule manufactured by the FDM PLA method has isotropic strength was designed. In addition, the fracture strength in the x, y, and z directions of the load applied through the compression test was analyzed. As a result, it was confirmed that the newly proposed capsule design has an isotropic fracture strength of 1400% in all directions compared to the existing spherical thin-film capsule.

  • PDF

치과 CAD/CAM 가공방식에 따른 임시보철물의 내면 적합도 : 3차원 중첩 분석 (Internal evaluation of provisional restorations according to the dental CAD/CAM manufacturing method : Three-dimensional superimpositional analysis)

  • 김재홍;김기백
    • 대한치과기공학회지
    • /
    • 제41권2호
    • /
    • pp.81-86
    • /
    • 2019
  • Purpose: The purpose of the present study was to compare the internal fit of two different temporary restorations fabricated by dental CAD/CAM system and to evaluate clinical effectiveness. Methods: Composite resin tooth of the maxillary first molar was prepared as occlusal reduction(2.0mm), axial reduction(1mm offset), vertical angle(6 degree) and chamfer margin for a temporary crown and duplicated epoxy die was fabricated. The epoxy dies were used to fabricate provisional restorations by CAD/CAM milling technique or 3D-printing technique. The inner data from all crowns were superimposed on the master die file in the 'best-fit alignment' method using 3D analysis software. Statistical analysis was performed using a Wilcoxon's rank sum test for differences between groups. Results: It showed that the internal RMS(Root Mean Square) values of the additive group were significantly larger than those of other group. No significant differences in internal discrepancies were observed in the temporary crowns among the 2 groups with different manufacturing method. Conclusion: All the groups had the internal fit within the clinical acceptable range (< $50{\mu}m$). The continuous research in the future to be applied clinically for the adaptation of additive manufacturing technique are needed.

Comparison of fracture strength after thermomechanical aging between provisional crowns made with CAD/CAM and conventional method

  • Reeponmaha, Tanapon;Angwaravong, Onauma;Angwarawong, Thidarat
    • The Journal of Advanced Prosthodontics
    • /
    • 제12권4호
    • /
    • pp.218-224
    • /
    • 2020
  • PURPOSE. The objectives of this study were to evaluate the fracture strength and fracture patterns of provisional crowns fabricated from different materials and techniques after receiving stress from a simulated oral condition. MATERIALS AND METHODS. A monomethacrylate-based resin (Unifast Trad) and a bis-acryl-based (Protemp 4) resin were used to fabricate provisional crowns using conventional direct technique. A milled monomethacrylate resin (Brylic Solid) and a 3D-printed bis-acrylate resin (Freeprint Temp) were chosen to fabricate provisional crowns using the CAD/CAM process. All cemented provisional crowns (n=10/group) were subjected to thermal cycling (5,000 cycles at 5°-55℃) and cyclic occlusal load (100 N at 4 Hz for 100,000 cycles). Maximum force at fracture was tested using a universal testing machine. RESULTS. Maximum force at fracture (mean ± SD, N) of each group was 657.87 ± 82.84 for Unifast Trad, 1125.94 ± 168.07 for Protemp4, 953.60 ± 58.88 for Brylic Solid, and 1004.19 ± 122.18 for Freeprint Temp. One-way ANOVA with Tamhane post hoc test showed that the fracture strength of Unifast Trad was statistically significantly lower than others (P<.01). No statistically significant difference was noted among other groups. For failure pattern analysis, Unifast Trad and Brylic Solid showed less damage than Protemp 4 and Freeprint Temp groups. CONCLUSION. Provisional crowns fabricated using the CAD/CAM process and the conventionally fabricated bis-acryl resins exhibited significant higher fracture strength compared to conventionally fabricated monomethacrylate resins after the aging regimen. Therefore, CAD/CAM milling and 3D printing of provisional restorations may be good alternatives for long term provisionalization.

Assembly performance evaluation method for prefabricated steel structures using deep learning and k-nearest neighbors

  • Hyuntae Bang;Byeongjun Yu;Haemin Jeon
    • Smart Structures and Systems
    • /
    • 제32권2호
    • /
    • pp.111-121
    • /
    • 2023
  • This study proposes an automated assembly performance evaluation method for prefabricated steel structures (PSSs) using machine learning methods. Assembly component images were segmented using a modified version of the receptive field pyramid. By factorizing channel modulation and the receptive field exploration layers of the convolution pyramid, highly accurate segmentation results were obtained. After completing segmentation, the positions of the bolt holes were calculated using various image processing techniques, such as fuzzy-based edge detection, Hough's line detection, and image perspective transformation. By calculating the distance ratio between bolt holes, the assembly performance of the PSS was estimated using the k-nearest neighbors (kNN) algorithm. The effectiveness of the proposed framework was validated using a 3D PSS printing model and a field test. The results indicated that this approach could recognize assembly components with an intersection over union (IoU) of 95% and evaluate assembly performance with an error of less than 5%.