• Title/Summary/Keyword: 3D optical simulation

Search Result 193, Processing Time 0.018 seconds

Simulation of Moire Effect in 3D Displays

  • Saveljev, Vladimir;Kim, Sung-Kyu
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.310-315
    • /
    • 2010
  • Theoretical and experimental investigations of moires in 3D displays were performed. To describe and minimize moires, we propose the polar representation form of moire waves. The experimental and theoretical data are in good agreement except in the neighborhood of the minimization angle. The implicit formulas are found for visible moires of line gratings at finite distances. The computer simulation and the physical experiments confirm the moire appearance for this case.

Optical Encryption and Information Authentication of 3D Objects Considering Wireless Channel Characteristics

  • Lee, In-Ho;Cho, Myungjin
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.6
    • /
    • pp.494-499
    • /
    • 2013
  • In this paper, we present an optical encryption and information authentication of 3D objects considering wireless channel characteristics. Using the optical encryption such as double random phase encryption (DRPE) and 3D integral imaging, a 3D scene with encryption can be transmitted. However, the wireless channel causes the noise and fading effects of the 3D transmitted encryption data. When the 3D encrypted data is transmitted via wireless channel, the information may be lost or distorted because there are a lot of factors such as channel noise, propagation fading, and so on. Thus, using digital modulation and maximum likelihood (ML) detection, the noise and fading effects are mitigated, and the encrypted data is estimated well at the receiver. In addition, using computational volumetric reconstruction of integral imaging and advanced correlation filters, the noise effects may be remedied and 3D information may be authenticated. To prove our method, we carry out an optical experiment for sensing 3D information and simulation for optical encryption with DRPE and authentication with a nonlinear correlation filter. To the best of our knowledge, this is the first report on optical encryption and information authentication of 3D objects considering the wireless channel characteristics.

A Study of Optical Properties of Assembled Plasma Display Panel with 3-D Optical Code

  • Park, Hyun-Myung;Kang, Jungwon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.1
    • /
    • pp.67-71
    • /
    • 2012
  • The optical properties of PDP, such as the transmittance and reflectance, were analyzed with 3D optical code. Three different ITO-less structures in the front panel are examined. In the assembled panel study, the test 1 structure shows 16.6% and 10.2% higher reflectance than the structures of tests 2 and 3, respectively. In order to check the validation of the simulation result, three 7.5-inch test panels having the same geometry and property are fabricated as simulation models. The calculated reflective properties are compared to the measured data from real panels. The relative difference extracted from the simulation and measurement methods is less than 4.9% and are well matched.

A Study of The Eyequency Response Improvement of TO-can Package for SFF/SFP Optical Transceiver (SFF/SFP 장 송수신기용 TO-can 패키지 주파수 응답 향상 연구)

  • Lee Sang-Hoon;Jung Hyun-Do;Koo Bon-Jo;Han Sang-Kook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1A
    • /
    • pp.107-112
    • /
    • 2004
  • We propose the optimum TO-can package design in SFF/SFP optical transceiver modules to improve 3dB-bandwidth. The frequency response of TO-38 package is measured and compared to simulation where the 3dB-bandwidth was 3.5GHz. For a higher operating bandwidth (>15GHz), the new optimized physical geometries of TO-can package such as bonding-wire, lead and material was suggested. The optimal result of simulation shows that TO-can package can be used at a higher bit rate optical module of 10Gbps.

Design and fabrication of SOI $1\times2$ Asymmetric Optical Switch by Thermo-optic Effect (열광학 효과를 이용한 SOI $1\times24$ 비대칭 광스위치 설계 및 제작)

  • 박종대;서동수;박재만
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.10
    • /
    • pp.51-56
    • /
    • 2004
  • We propose and fabricate an 1${\times}$2 asymmetric optical switch by TOE using SOI wafer based on silicon which has very large TOE figure and it is a good material for optical devices. SOI wafer consists of 3 layers; upper Si layer for device(waveguide;core, n=3.5), buried oxide layer for insulator(clad, n=1.5) and Si substrate layer. We designed 1${\times}$2 asymmetric y-branched single mode optical waveguide switch by BPM simulation and metal heater by heat transfer simulation. Fabricated switch shows about 3.5 watts of power consumption and over 20dB of crosstalk between output channels.

Atomistic simulation of surface passivated wurtzite nanowires: electronic bandstructure and optical emission

  • Chimalgi, Vinay U.;Nishat, Md Rezaul Karim;Yalavarthi, Krishna K.;Ahmed, Shaikh S.
    • Advances in nano research
    • /
    • v.2 no.3
    • /
    • pp.157-172
    • /
    • 2014
  • The three-dimensional Nano-Electronic Modeling toolkit (NEMO 3-D) is an open source software package that allows the atomistic calculation of single-particle electronic states and optical response of various semiconductor structures including bulk materials, quantum dots, impurities, quantum wires, quantum wells and nanocrystals containing millions of atoms. This paper, first, describes a software module introduced in the NEMO 3-D toolkit for the calculation of electronic bandstructure and interband optical transitions in nanowires having wurtzite crystal symmetry. The energetics (Hamiltonian) of the quantum system under study is described via the tight-binding (TB) formalism (including $sp^3$, $sp^3s^*$ and $sp^3d^5s^*$ models as appropriate). Emphasis has been given in the treatment of surface atoms that, if left unpassivated, can lead to the creation of energy states within the bandgap of the sample. Furthermore, the developed software has been validated via the calculation of: a) modulation of the energy bandgap and the effective masses in [0001] oriented wurtzite nanowires as compared to the experimentally reported values in bulk structures, and b) the localization of wavefunctions and the optical anisotropy in GaN/AlN disk-in-wire nanowires.

The characteristics and optimal modeling of input source for optical device using thin film filter in optical telecommunication network (광통신용 박막필터형 광소자 분석을 위한 최적화 모델링과 특성분석)

  • 김명진;이승걸
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.3
    • /
    • pp.306-311
    • /
    • 2003
  • In this paper, we modeled the incident beam in order to analyze and evaluate the optical thin film device for wavelength division multiplexing in optical telecommunication network. As applied ray tracing method to the optical path, we were compared the accuracy of coupling efficiency simulated by two modeling methods. In the results of sinulation, ceil modeling method was preferred to annual modeling method in micro-optic device because of accuracy for coupling efficiency and Gaussian intensity distribution. In the results of optimal simulation for optical device using thin film filter, the distance (d1) between optical fiber and GRIN lens, the distance (d2) between GRIN lens and thin film filter and the coupling efficiency were 0.24 mm, 0.25 mm and -0.11 ㏈ respectively. As d2 was displaced at 0.25 mm and d1 was varied in order to evaluate the optimal value, d1 and maximum coupling efficiency were 0.24 mm and -0.35㏈, respectively. Then the results of experiment were corresponded to that of optimal simulation by cell modeling and it was possible to analyze the performance for optical device using thin film filter by the simulation.

Single DLP Optical Engine for Solid Volumetric True 3D Display

  • Huaxia, Wu;Qibin, Feng;Guoqiang, Lv;Dongdai, Dongdai
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1371-1374
    • /
    • 2009
  • According to depth cues of an image, the optical engine of the solid volumetric true 3D display can project a sequence of slices of a 2D image to corresponding display at a set of liquid shutters (LC) locating at different depth. A single DLP optical engine developed for a solid volumetric true 3D display consists of a lamp, reflector, color wheel, hollow integrator, relays, DMD, and projection lens. The simulation results show that the optical engine designed for single DLP volumetric true 3D display satisfies the requirements.

  • PDF

Effectiveness of Beam-propagation-method Simulations for the Directional Coupling of Guided Modes Evaluated by Fabricating Silica Optical-waveguide Devices (광도파로 모드 간의 방향성 결합현상에 대한 빔 진행 기법 설계의 효율성 및 실리카 광도파로 소자 제작을 통한 평가)

  • Jin, Jinung;Chun, Kwon-Wook;Lee, Eun-Su;Oh, Min-Cheol
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.4
    • /
    • pp.137-145
    • /
    • 2022
  • A directional coupler device, one of the fundamental components of photonic integrated circuits, distributes optical power by evanescent field coupling between two adjacent optical waveguides. In this paper, the design process for manufacturing a directional coupler device is reviewed, and the accuracy of the design results, as seen from the characteristics of the actual fabricated device, is confirmed. When designing a directional coupler device through a two-dimensional (2D) beam-propagation-method (BPM) simulation, an optical structure is converted to a two-dimensional planar structure through the effective index method. After fabricating the directional coupler device array, the characteristics are measured. To supplement the 2D-BPM results that are different from the experimental results, a 3D-BPM simulation is performed. Although 3D-BPM simulation requires more computational resources, the simulation result is closer to the experimental results. Furthermore, the waveguide core refractive index used in 3D-BPM is adjusted to produce a simulation result consistent with the experimental results. The proposed design procedure enables accurate design of directional coupler devices, predicting the experimental results based on 3D-BPM.