• Title/Summary/Keyword: 3D object view

Search Result 181, Processing Time 0.023 seconds

A Study on the Quality of Photometric Scanning Under Variable Illumination Conditions

  • Jeon, Hyoungjoon;Hafeez, Jahanzeb;Hamacher, Alaric;Lee, Seunghyun;Kwon, Soonchul
    • International journal of advanced smart convergence
    • /
    • v.6 no.4
    • /
    • pp.88-95
    • /
    • 2017
  • The conventional scan methods are based on a laser scanner and a depth camera, which requires high cost and complicated post-processing. Whereas in photometric scanning method, the 3D modeling data is acquired through multi-view images. This is advantageous compared to the other methods. The quality of a photometric 3D model depends on the environmental conditions or the object characteristics, but the quality is lower as compared to other methods. Therefore, various methods for improving the quality of photometric scanning are being studied. In this paper, we aim to investigate the effect of illumination conditions on the quality of photometric scanning data. To do this, 'Moai' statue is 3D printed with a size of $600(H){\times}1,000(V){\times}600(D)$. The printed object is photographed under the hard light and soft light environments. We obtained the modeling data by photometric scanning method and compared it with the ground truth of 'Moai'. The 'Point-to-Point' method used to analyseanalyze the modeling data using open source tool 'CloudCompare'. As a result of comparison, it is confirmed that the standard deviation value of the 3D model generated under the soft light is 0.090686 and the standard deviation value of the 3D model generated under the hard light is 0.039954. This proves that the higher quality 3D modeling data can be obtained in a hard light environment. The results of this paper are expected to be applied for the acquisition of high-quality data.

Normalized Cross Correlation-based Multiview background Subtraction for 3D Object Reconstruction (3차원 객체 복원을 위한 정규 상관도 기반 다중 시점 배경 차분 기법)

  • Paeng, Kyunghyun;Hwang, Sung Soo;Kim, Hee-Dong;Kim, Sujung;Yoo, Jisung;Kim, Seong Dae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.228-237
    • /
    • 2013
  • In this paper, we propose a normalized cross correlation(NCC)-based multiview background subtraction method which is robust when an object and background have similar color. When the background of the capturing environment is not artificially composed, the regions in the background images which would be occluded by an object tends to have difference colors. The colors of those regions, however, becomes similar when an object enters the capturing environment. Based on this assumption, this paper proposes a concept of GoNCC(Graph of Normalized Cross Correlation). GoNCC is the distribution of NCC between a pixel in an image and pixels related by epipolar constraints with the pixel. The proposed multiview background subtraction method is performed by comparing GoNCC of the current images with the background images. To reduce computational complexity, we perform multiview background subtraction only to the pixels undetermined by single view background subtraction. Experimental results show that the proposed method is more robust to color similarity between an object and background than a single-view background subtraction method and a previous multiview background subtraction method.

A Study on the Recognition of Curved Objects Using Range Data (3차원 화상을 이용한 곡면물체의 자동인식에 관한 연구)

  • 양우석;장종환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.10
    • /
    • pp.1910-1924
    • /
    • 1994
  • Curved 3D objects represented by range data contain large amounts of information compared with planar objects, but do not have distinct features for matching to those of object models. This makes it difficult to represent and identify a general 3D curved object. This paper introduces a new view-point independent approach to recognizing general 3D curved objects using range data. Our approach makes use of the relative geometric differences between particular points on the object surface and some model points. The model points are prespecified arbitrarily and keeping the task in mind so that the following task can be easily described using the model points. Our approach has several advantages. Since model points are specified arbitrarily and task dependently, further processing can be reduced in application by locating the model points at places which are useful for further operations in the task. The knowledge base is simple with less storage requirement. And, it is easy to compensate the uncertainties of positions estimation caused by noise and quantization error.

  • PDF

Real-time Virtual-viewpoint Image Synthesis Algorithm Using Kinect Camera

  • Lee, Gyu-Cheol;Yoo, Jisang
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1016-1022
    • /
    • 2014
  • Kinect is a motion sensing camera released by Microsoft in November 2010 for the Xbox360 that is used to produce depth and color images. Because Kinect uses an infrared pattern, it generates holes and noises around an object's boundaries in the obtained images. The flickering phenomenon and unmatched edges also occur. In this paper, we propose a real time virtual-view video synthesis algorithm which results in a high quality virtual view by solving these problems stated above. The experimental results show that the proposed algorithm performs much better than the conventional algorithms.

Design and Implementation of Interactive Multi-view Visual Contents Authoring System (대화형 복수시점 영상콘텐츠 저작시스템 설계 및 구현)

  • Lee, In-Jae;Choi, Jin-Soo;Ki, Myung-Seok;Jeong, Se-Yoon;Moon, Kyung-Ae;Hong, Jin-Woo
    • Journal of Broadcast Engineering
    • /
    • v.11 no.4 s.33
    • /
    • pp.458-470
    • /
    • 2006
  • This paper describes issues and consideration on authoring of interactive multi-view visual content based on MPEG-4. The issues include types of multi-view visual content; scene composition for rendering; functionalities for user-interaction; and multi-view visual content file format. The MPEG-4 standard, which aims to provide an object based audiovisual coding tool, has been developed to address the emerging needs from communications, interactive broadcasting as well as from mixed service models resulting from technological convergence. Due to the feature of object based coding, the use of MPEG-4 can resolve the format diversity problem of multi-view visual contents while providing high interactivity to users. Throughout this paper, we will present which issues need to be determined and how they can be realized by means of MPEG-4 Systems.

An Improvement of Computation of Rotation Matrix for a 3D Image about an Arbitrary Axis (임의의 축에 관한 3차원 영상의 회전 행렬 계산 속도의 개선)

  • Kim, Eung-Gon;Heo, Yeong-Nam;Lee, Ung-Gi
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.3
    • /
    • pp.390-396
    • /
    • 1995
  • One of the advantages of computer graphics is that it enables to view an object on different viewpoints and different angles. Therefore, a computer graphics system should be able to rotate an arbitrary object by an arbitrary angle about an arbitrary axis. This is usually done by rotating vertices that represent an object and connecting them. Hence an image may have many vertices, it is important to be able to rotate each of them quickly. Therefore, this paper is interested in a rotation matrix computation method that consists of the smallest number of computational steps. This pater proposes an algorithm that computes rotation matrix to rotate a 3 dimensional image about an arbitrary axis quickly.

  • PDF

A Quadtree-based Disparity Estimation for 3D Intermediate View Synthesis (3차원 중간영상의 합성을 위한 쿼드트리기반 변이추정 방법)

  • 성준호;이성주;김성식;하태현;김재석
    • Journal of Broadcast Engineering
    • /
    • v.9 no.3
    • /
    • pp.257-273
    • /
    • 2004
  • In stereoscopic or multi-view three dimensional display systems, the synthesis of intermediate sequences is inevitably needed to assure look-around capability and continuous motion parallax so that it could enhance comfortable 3D perception. The quadtree-based disparity estimation is one of the most remarkable methods for synthesis of Intermediate sequences due to the simplicity of its algorithm and hardware implementation. In this paper, we propose two ideas in order to reduce the annoying flicker at the object boundaries of synthesized intermediate sequences by quadtree-based disparity estimation. First, new split-scheme provides more consistent auadtree-splitting during the disparity estimation. Secondly, adaptive temporal smoothing using correlation between present frame and previous one relieves error of disparity estimation. Two proposed Ideas are tested by using several stereoscopic sequences, and the annoying flickering is remarkably reduced by them.

A Study on the Digital Holographic Image Acquisition Method using Chroma Key Composition (크로마키 합성을 이용한 디지털 홀로그래피 이미지 획득 방법 연구)

  • Kim, Ho-sik;Kwon, Soon-chul;Lee, Seung-hyun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.313-321
    • /
    • 2022
  • As 5G is getting developed, people are getting interested in immersive content. Some predicts that immersive content may be implemented in real life such as holograms, which were only possible in movies. Holograms, which has been studied for a long time since Dennis Gabor published the basic theory in 1948, are constantly developing in a new direction with digital technology. It is developing from a traditional optical hologram, which is produced by recording the interference pattern of light to a computer generated hologram (CGH) and a digital hologram printer. In order to produce a hologram using a digital hologram printer, holographic element (Hogel) image must first be created using multi-view images. There are a method of directly photographing an actual image and a method of modeling an object using 3D graphic production tool and rendering the motion of a virtual camera to acquire a series of multi-view images. In this paper, we propose a new method of getting image, which is one of the visual effect, VFX, producing multi-view images using chroma key composition. We shoot on the green screen of actual object, suggest the overall workflow of composition with 3D computer graphic(CG) and explain the role of each step. We expected that it will be helpful in researching a new method of image acquisition in the future if all or part of the proposed workflow to be applied.

Rendering Trees Using Billboarding Method with View Dependent Texture Re-creation in Real-Time (시점 종속적 빌보드 텍스쳐 재생성을 이용한 나무의 실시간 렌더링)

  • Min, Sung-Hwan;Kim, Chang-Hun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.8 no.4
    • /
    • pp.9-16
    • /
    • 2002
  • In this paper we propose an extended billboarding method for rendering trees. It's difficult circumstance that PC renders forest by general polygon rendering in real-time, because tree object consists of tremendous leaves and limbs. Our method re-creates an appropriate texture image by 3D image warping equation each frame, and we use it for a billboarding method. For speed up, we use warping method with a image pyramid and image caching.

  • PDF

From Exoscope into the Next Generation

  • Nishiyama, Kenichi
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.3
    • /
    • pp.289-293
    • /
    • 2017
  • An exoscope, high-definition video telescope operating monitor system to perform microsurgery has recently been proposed an alternative to the operating microscope. It enables surgeons to complete the operation assistance by visualizing magnified images on a display. The strong points of exoscope are the wide field of view and deep focus. It minimized the need for repositioning and refocusing during the procedure. On the other hand, limitation of magnifying object was an emphasizing weak point. The procedures are performed under 2D motion images with a visual perception through dynamic cue and stereoscopically viewing corresponding to the motion parallax. Nevertheless, stereopsis is required to improve hand and eye coordination for high precision works. Consequently novel 3D high-definition operating scopes with various mechanical designs have been developed according to recent high-tech innovations in a digital surgical technology. It will set the stage for the next generation in digital image based neurosurgery.