• Title/Summary/Keyword: 3D numerical model

Search Result 1,535, Processing Time 0.027 seconds

Free Vibration Analysis of FIV Test Loop (유체유발진동 시험용 유동루프의 자유진동해석)

  • Lee, K.H.;Kang, H.S.;Song, K.N.;Yoon, K.H.;Choi, M.H.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.905-910
    • /
    • 2004
  • Vibration characteristics of the FIV test loop for the Flow-Induced Vibration(FIV) study of a PWR partial(5x5) fuel assembly are investigated by the Finite Element(FE) analysis and the modal test. For the FE analysis, 3-D beam element is used for the pipes and the test section and mass element used for the valves and flanges. The 'U' restrainer stiffness determined by numerical simulation is used for the FE model. The result of the FE analysis is compared with that of the modal test. The higher mode similarity between the test and analysis is observed in a few low modes. After that, the mode similarity reduce as the mode goes high. It is concluded that the first to the third vibration modes are observed at the lower parts of the 6 inches restoring line, followed by a local mode at the test section, and the natural frequencies of the modes are 22.4 Hz, 26.0 Hz, 27.5 Hz and 31.4 Hz.

  • PDF

NUMERICAL SIMULATIONS OF HH 211: A REFLECTION-SYMMETRIC BIPOLAR OUTFLOW

  • MORAGHAN, ANTHONY;LEE, CHIN-FEI;HUANG, PO-SHENG;VAIDYA, BHARGAV
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.113-114
    • /
    • 2015
  • Recent high-resolution, high-sensitivity observations of protostellar jets have shown many to possess an underlying 'wiggle' structure. HH 211 is one such example where recent sub-mm observations revealed a clear reflection-symmetric wiggle. An explanation for this is that the HH211 jet source is moving as part of a protobinary system. Here we test this assumption by simulating HH211 through 3D hydrodynamic simulations using the pluto code with a molecular chemistry and cooling module, and initial conditions based on an analytical model derived from SMA observations. Molecular chemistry allows us to accurately plot synthetic molecular emission maps and position-velocity diagrams for direct comparison to observations, enabling us to test the observational assumptions and put constraints on the physical parameters of HH211. Our preliminary results show that the reflection-symmetric wiggle can be recreated through the assumption of a jet source being part of a binary system.

Numerical Simulation of Welding Residual Stress Distribution on T-joint Fillet Structure

  • Hwang, Se-Yun;Lee, Jang-Hyun;Kim, Sung-Chan;Viswanathan, Kodakkal Kannan
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.2
    • /
    • pp.82-91
    • /
    • 2012
  • Fillet welding is widely used in the assembly of ships and offshore structures. The T-joint configuration is frequently reported to experience fatigue damage when a marine structure meets extreme loads such as storm loads. Fatigue damage is affected by the magnitude of residual stresses on the weld. Recently, many shipping registers and design guides have required that the fatigue strength assessment procedure of seagoing structures under wave-induced random loading and storm loading be compensated based on the effect of residual stresses. We propose a computational procedure to analyze the residual stresses in a T-joint. Residual stresses are measured by the X-ray diffraction (XRD) method, and a 3-D finite element analysis (FEA) is performed to obtain the residual stress profile in the T-joint. The proposed finite element model is validated by comparing experiments with computational results, and the characteristics of the residual stresses in the T-joint are discussed.

Deformation and failure mechanism exploration of surrounding rock in huge underground cavern

  • Tian, Zhenhua;Liu, Jian;Wang, Xiaogang;Liu, Lipeng;Lv, Xiaobo;Zhang, Xiaotong
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.275-291
    • /
    • 2019
  • In a super-large underground with "large span and high side wall", it is buried in mountains with uneven lithology, complicated geostress field and developed geological structure. These surrounding rocks are more susceptible to stability issues during the construction period. This paper takes the left bank of Baihetan hydropower station (span is 34m) as a case study example, wherein the deformation mechanism of surrounding rock appears prominent. Through analysis of geological, geophysical, construction and monitoring data, the deformation characteristics and factors are concluded. The failure mechanism, spatial distribution characteristics, and evolution mechanism are also discussed, where rock mechanics theory, $FLAC^{3D}$ numerical simulation, rock creep theory, and the theory of center point are combined. In general, huge underground cavern stability issues has arisen with respect to huge-scale and adverse geological conditions since settling these issues will have milestone significance based on the evolutionary pattern of the surrounding rock and the correlation analyses, the rational structure of the factors, and the method of nonlinear regression modeling with regard to the construction and development of hydropower engineering projects among the worldwide.

Development of shear capacity equations for RC beams strengthened with UHPFRC

  • Mansour, Walid;Sakr, Mohammed;Seleemah, Ayman;Tayeh, Bassam A.;Khalifa, Tarek
    • Computers and Concrete
    • /
    • v.27 no.5
    • /
    • pp.473-487
    • /
    • 2021
  • The review of the literature and design guidelines indicates a lack of design codes governing the shear strength of reinforced concrete (RC) beams strengthened with ultrahigh-performance fiber-reinforced concrete (UHPFRC). This study uses the results of a 3D finite element model constructed previously by the authors and verified against an experimental programme to gain a clear understanding of the shear strength of RC beams strengthened with UHPFRC by using different schemes. Experimental results found in the literature along with the numerical results for shear capacities of normal-strength RC and UHPFRC beams without stirrups are compared with available code design guidelines and empirical models found in the literature. The results show variance between the empirical models and the experimental results. Accordingly, proposed equations derived based on empirical models found in the literature were set to estimate the shear capacity of normal-strength RC beams without stirrups. In addition, the term 'shear span-to-depth ratio' is not considered in the equations for design guidelines found in the literature regarding the shear capacity of UHPFRC beams without stirrups. Consequently, a formula estimating the shear strength of UHPFRC and RC beams strengthened with UHPFRC plates and considering the effect of shear span-to-depth ratio is proposed and validated against an experimental programme previously conducted by the authors.

A Novel Active User Identification Method for Space based Constellation Network

  • Kenan, Zhang;Xingqian, Li;Kai, Ding;Li, Li
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.212-216
    • /
    • 2022
  • Space based constellation network is a kind of ad hoc network in which users are self-organized without center node. In space based constellation network, users are allowed to enter or leave the network at any given time. Thus, the number of active users is an unknown and time-varying parameter, and the performance of the network depends on how accurately this parameter is estimated. The so-called problem of active user identification, which consists of determining the number and identities of users transmitting in space based constellation network is discussed and a novel active user identification method is proposed in this paper. Active user identification code generated by transmitter address code and receiver address code is used to spread spectrum. Subspace-based method is used to process received signal and judgment model is established to identify active users according to the processing results. The proposed method is simulated under AWGN channel, Rician channel and Rayleigh channel respectively. Numerical results indicate that the proposed method obtains at least 1.16dB Eb/N0 gains compared with reference methods when miss alarm rate reaches 10-3.

Development Procedure of Generic Component Reliability Data Base in PSA and Its Application (확률론적 안전성평가를 위한 일반 기기 신뢰도 데이타 베이스 구축 절차와 적용)

  • Hwang, M.J.;Kim, K.Y.;Lim, T.J.;Jung, W.D.;Kim, T.W.
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.241-248
    • /
    • 1997
  • This paper presents the development procedure and application of the generic component reliability data base considering the dependency among dependent generic compendia in NPPs (Nuclear Power Plants) PSA (Probabilistic Safety Assessment) under construction or without operating history. We use MPRDP (Multi-Purpose Reliability Data Processor) code developed in KAERI (Korea Atomic Energy Research Institute) based on a PEB (Parametric Empirical Bayesian) procedure to estimate the reliability. The employed model in this study accounts for the relative credibility as well as the dependency among generic estimates. Numerical examples and the part of summarized reliability data table are provided as the application.

  • PDF

Friction-based beam-to-column connection for low-damage RC frames with hybrid trussed beams

  • Colajanni, Piero;Pagnotta, Salvatore
    • Steel and Composite Structures
    • /
    • v.45 no.2
    • /
    • pp.231-248
    • /
    • 2022
  • Hybrid Steel-Trussed Concrete Beam (HSTCB) is structural typology suitable for light industrialization. HSTCBs usually cover long span with small depths, which lead to significant amount of longitudinal rebars. The latter make beam-column joints more prone to damage due to earthquake-induced cyclic actions. This phenomenon can be avoided using friction-based BCCs. Friction devices at Beam-to-Column Connections (BCCs) have become promising solutions to reduce the damage experienced by structural members during severe earthquakes. Few solutions have been developed for cast-in-place Reinforced Concrete (RC) and steel-concrete composite Moment Resisting Frames (MRFs), because of the difficulty of designing cost-effective damage-proof connections. This paper proposes a friction-based BCC for RC MRFs made with HSTCBs. Firstly, the proposed connection is described, and its innovative characteristics are emphasized. Secondly, the design method of the connection is outlined. A detailed 3D FE model representative of a beam-column joint fitted with the proposed connection is developed. Several monotonic and cyclic analyses are performed, investigating different design moment values. Lastly, the numerical results are discussed, which demonstrate the efficiency of the proposed solution in preventing damage to RC members, and in ensuring satisfactory dissipative capacity.

Behavior and modeling of RC beams strengthened with NSM-steel technique

  • Md. Akter Hosen;Khalid Ahmed Al Kaaf;A.B.M. Saiful Islam;Mohd Zamin Jumaat;Zaheer Abbas Kazmi
    • Structural Engineering and Mechanics
    • /
    • v.88 no.1
    • /
    • pp.67-81
    • /
    • 2023
  • The reinforced concrete (RC) structures might need strengthening or upgradation due to adverse environmental conditions, design defects, modification requirements, and to prolong the expected lifespan. The RC beams have been efficiently strengthened using the near surface mounted (NSM) approach over the externally bonded reinforcing (EBR) system. In this study, the performance of RC beam elements strengthened with NSM-steel rebars was investigated using an experimental program and nonlinear finite element modeling (FEM). Nine medium-sized, rectangular cross-section RC beams total in number made up for the experimental evaluation. The beams strengthened with varying percentages of NSM reinforcement, and the number of grooves was assessed in four-point bending experiments up to failure. Based on the experimental evaluation, the load-displacement response, crack features, and failure modes of the strengthened beams were recorded and considered. According to the experimental findings, NSM steel greatly improved the flexural strength (up to about 84%) and stiffness of RC beams. The flexural response of the tested beams was simulated using a 3D non-linear finite element (FE) model. The findings of the experiments and the numerical analysis showed good agreement. The effect of the NSM groove and reinforcement on the structural response was then assessed parametrically.

Scene Generation of CNC Tools Utilizing Instant NGP and Rendering Performance Evaluation (Instant NGP를 활용한 CNC Tool의 장면 생성 및 렌더링 성능 평가)

  • Taeyeong Jung;Youngjun Yoo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.2
    • /
    • pp.83-90
    • /
    • 2024
  • CNC tools contribute to the production of high-precision and consistent results. However, employing damaged CNC tools or utilizing compromised numerical control can lead to significant issues, including equipment damage, overheating, and system-wide errors. Typically, the assessment of external damage to CNC tools involves capturing a single viewpoint through a camera to evaluate tool wear. This study aims to enhance existing methods by using only a single manually focused Microscope camera to enable comprehensive external analysis from multiple perspectives. Applying the NeRF (Neural Radiance Fields) algorithm to images captured with a single manual focus microscope camera, we construct a 3D rendering system. Through this system, it is possible to generate scenes of areas that cannot be captured even with a fixed camera setup, thereby assisting in the analysis of exterior features. However, the NeRF model requires considerable training time, ranging from several hours to over two days. To overcome these limitations of NeRF, various subsequent models have been developed. Therefore, this study aims to compare and apply the performance of Instant NGP, Mip-NeRF, and DS-NeRF, which have garnered attention following NeRF.