이븐 연결망은 고장허용 다중컴퓨터에 대한 하나의 모형으로 제안된 연결망으로, 간단한 라우팅 알고리즘, 최대고장허용도, 노드 중복 없는 경로와 같은 여러 가지 유용한 성질과 알고리즘들이 분석되었다. 기존에 발표된 라우팅 알고리즘과 노드 중복 없는 경로를 구성하는 알고리즘은 최적임이 증명되었다. 하지만 아직까지 이븐 연결망에서 에지 중복 없는 스패닝 트리를 구성하는 기법은 소개되지 않았다. 에지 중복 없는 스패닝 트리는 상호연결망의 고장허용도의 성능 향상과 효율적인 방송 기법을 분석하기 위해서 사용되는 매우 유용한 기법이다. 기존에 발표된 라우팅 알고리즘 또는 노드 중복 없는 경로를 구성하는 알고리즘은 라우팅 또는 노드 중복 없는 경로를 위한 알고리즘으로 에지 중복 없는 스패닝 트리를 구성하기 위해 적용될 수 없는 알고리즘이다. 본 논문에서는 이븐 연결망 $E_d$에서 에지 중복 없는 스패닝 트리를 구성하는 알고리즘을 제안한다.
본 논문에서는 전력 증폭기 설계에 유용한 분포정수 임피던스 정합회로의 합성법을 제시하고, 이에 의하여 RF 전력 증폭기를 설계하였다. 분포정수 정합회로의 전달함수는 Chebyshev 근사에 의하여 유도되며, 주어진 구조의 회로 소자 값은 최소 삽입손실과 리플의 함수로 주어진다. 이의 응용 예로써 전력 트랜지스터를 로드 풀(load-pull) 데이터로 모델링한 다음, 정합회로 합성을 이용하여 200~900MHz의 대역에서 17dB의 이득 및 20W의 출력 전력에서 -43dBc 이하의 IM3을 갖는 전력 증폭기를 설계하였다. 제작된 증폭기는 주어진 대역에서 설계치에 근접하는 특성을 나타내어 전달함수에 의한 분포정수 정합회로의 합성이 RF 전력 증폭기의 설계에 유용하게 사용될 수 있음을 입증하였다.
The systematic and effective design method of a Class-D current-source resonant inverter for use in an induction cooker with zero-ripple line current is presented. The design procedure is based on the principle of the Class-D current-source resonant inverter with a simplified load network model that is a parallel equivalent circuit. An induction load characterization is obtained from a large-signal excitation test-bench based on parallel load network, which is the key to an accurate design for the induction cooker system. Accordingly, the proposed scheme provides a systematic, precise, and feasible solution than the existing design method based on series-parallel load network under low-signal excitation. Moreover, a zero-ripple condition of utility-line input current is naturally preserved without any extra circuit or control. Meanwhile, a differential-mode input electromagnetic interference (EMI) filter can be eliminated, high power quality in utility-line can be obtained, and a standard-recovery diode of bridge-rectifier can be employed. The step-by-step design procedure explained with design example. The devices stress and power loss analysis of induction cooker with a parallel load network under large-signal excitation are described. A 2,500-W laboratory prototype was developed for $220-V_{rms}/50-Hz$ utility-line to verify the theoretical analysis. An efficiency of the prototype is 96% at full load.
본 논문에서는 액체 시뮬레이션에서 표현되는 거품 효과(Foam effects)를 노이즈 없이 디테일하게 표현할 수 있는 인공신경망 프레임워크를 제안한다. 거품 입자의 생성 위치와 이류는 기존의 스크린 투영법을 활용하여 계산되며, 이 과정에서 나타나는 노이즈 문제를 인공신경망을 통해 풀어낸다. 스크린 투영 접근법에서 중요한 것은 투영맵이지만 이산화된 스크린 공간에 운동량을 투영하는 과정에서 투영맵에 노이즈가 발생하며, 우리는 인공신경망 기반의 디노이징(Denoising) 네트워크를 활용하여 이 문제를 효율적으로 풀어낸다. 투영맵을 통해 거품 생성 영역이 선별되면 2D를 3D 공간으로 역변환하여 거품 입자를 생성한다. 우리는 작은 크기의 거품들이 소실되는 기존의 디노이징 네트워크 문제를 해결하였다. 뿐만 아니라, 제안하는 알고리즘을 스크린 공간 투영 프레임워크와 통합함으로써 이 접근법이 갖는 모든 장점을 그대로 수용할 수 있다. 결과적으로 깔끔한 거품 효과 뿐만 아니라, 디노이징 과정으로 인해 소실된 거품을 안정적으로 표현할 수 있는지 다양한 실험을 통해 보여준다.
센서 네트워크는 모든 센서노드들이 한정된 에너지를 가지고 사용되기 때문에 센서 네트워크의 생명주기를 연장하기 위해서 많은 연구가 진행되고 있다. 본 논문에서는 이동성을 갖는 싱크노드와 고정된 센서노드들을 가지는 이동 센서 네트워크에서 전체적인 생명주기를 연장하는 동적 지역 업데이트 기반의 라우팅 프로토콜(D-LURP)를 제안한다. D-LURP는 싱크노드가 브로드캐스팅 영역을 벗어나는 경우 LURP와 같이 새롭게 라우팅 구축과정을 수행하는 대신에 이동한 싱크노드를 중심으로 생성된 브로드캐스팅 영역과 이전의 영역을 포함하는 새로운 동적 업데이트 지역을 구축한다. 동적 브로드캐스팅 지역의 설정을 통해 기존의 전체 네트워크에 싱크노드의 위치정보를 브로드캐스팅하는 과정을 생략하도록 한다. 이러한 망 전체에 대한 브로드캐스팅의 생략을 통해서 본 논문에서 제안하는 싱크노드의 이동에 의한 동적 라우팅 구축은 기존의 LURP에 비하여 적은 에너지 소비를 필요로 한다. 시뮬레이션을 통해 기존의 프로토콜과 제안한 방법의 성능평가를 한다.
컴퓨터 분야에서 얼굴근육 이미지합성은 살아있는 것 같은 모델을 실현하기 위한 가장 실재적인 접근방법 중의 하나이며, 얼굴근육 모델은 얼굴조직 성분과 근육으로 구성된다. 이 모델에서 얼굴 조직 성분에 영향을 주는 힘(force)은 각 근육의 수축강도로써 계산되어지고, 각 근육 파라메터의 결합은 명확한 얼굴표현으로 결정한다. 또한 각 근육 파라메터는 실험과 샘플 사진과 근육편집기로 생성한 명확한 이미지를 비유하여 에러처리과정을 통해 결정된다. 이 논문에서 신경회로망을 사용한 2D(Two-Dimension) 지시점의 움직임으로부터 얼굴근육의 자동인식 방법을 제안하고자 하며, 얼굴모델을 기반으로 한 물리학적 제한하에 캡처된 이미지에서 정보 흐름과 2D 포인트로부터 3D(Three-Dimension) 움직임 인식을 하고자 한다.
The multiobjective optimization (MO) problem usually includes the conflicting objectives and the use of conventional optimization algorithms for MO problem does not so good approach to obtain an effective optimal solution. In this paper, genetic algorithm (GA) as an effective method is used to solve such MO problem of brushless DC motor (BLDCM). 3D equivalent magnetic circuit network (EMCN) method which enables us to reduce the computational burden is also used to consider the 3D structure of BLDCM. In order to effectively obtain a set of Pareto optimal solutions in MO problem, ranking method proposed by Fonseca is applied. The objective functions are decrease of cogging torque and increase of torque respectively. The airgap length, teeth width and magnetization angle of PM are selected for the design variables. The experimental results are also shown to confirm the validity of the optimization results.
Research and Development has a property that involves uncertainity and risk in itself. Therefore, in order to scheduling of R & D activity, it Is needed of a certain probabilistic network technique with due regard to feedback process used to occur in the R & D proceeding. It is GERT that was developed as the need arises . In this study, the network structure of GERT-I and GERT-II was combined and then simulation analysis was used to it. According to that analysis , an advanced GERT model which covers the following stochastic problems was examined. 1 Evaluating success feasibility under the complex condition (time and cost). 2 Selecting acceptance range for the worst. 3. Selecting optimum path on basis of time, cost and success. 4. Evaluating project utility among the project alternatives. It is for managing R&D projects more effectively.
Brain tumor segmentation problem has challenges in the tumor diversity of location, imbalance, and morphology. Attention mechanisms have recently been used widely to tackle medical segmentation problems efficiently by focusing on essential regions. In contrast, the fusion approaches enhance performance by merging mutual benefits from many models. In this study, we proposed a 3D dual fusion attention network to combine the advantages of fusion approaches and attention mechanisms by residual self-attention and local blocks. Compared to fusion approaches and related works, our proposed method has shown promising results on the BraTS 2018 dataset.
Due to the advancement of deep learning techniques, the medical field is undergoing significant upheaval. One of the prominent applications is generating an imaging modality from another imaging modality. This application helps reduce the cost of taking multiple types of medical images for diagnostic imaging. Although many methods have been proposed for generating medical images, only a few studies focus on three-dimensional (3D) images. Therefore, in this paper, we propose a deep generative adversarial network (GAN) for generating a 3D target image from a 3D source image. The results have shown that our proposed approach can generate high-quality images and holds promise for practical use.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.