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요       약 

Due to the advancement of deep learning techniques, the medical field is undergoing significant upheaval. One 

of the prominent applications is generating an imaging modality from another imaging modality. This application 

helps reduce the cost of taking multiple types of medical images for diagnostic imaging. Although many methods 

have been proposed for generating medical images, only a few studies focus on three-dimensional (3D) images. 

Therefore, in this paper, we propose a deep generative adversarial network (GAN) for generating a 3D target image 

from a 3D source image. The results have shown that our proposed approach can generate high-quality images and 

holds promise for practical use. 

 

1. INTRODUCTION 

Generative models [1,2] are now highly effective 

instruments in many fields, including medicine, where they 

can greatly improve therapy and diagnosis capacities. Cross-

modality generation [3,4], in which a model is trained to 
synthesis one form of medical image from another, is one of 

the main uses of generative models in medical imaging. This 

methodology tackles the difficulty of acquiring all-

encompassing multimodal data, including PET (positron 

emission tomography), CT (computerized tomography), and 

MRI (magnetic resonance imaging), which sometimes 

necessitate distinct and expensive imaging procedures. 

Through the use of generative models, multi-source data 

integration can be used to produce missing modalities, 

minimize the number of scans that patients must undergo, and 

provide more precise clinical insights. 

A generative model is trained to map images from a source 
modality to a target modality in the context of cross-modality 

generation. For instance, generating PET images from MRI 

inputs allows for the high-resolution anatomical features that 

MRI gives, while also facilitating the non-invasive extraction 

of functional information from PET. Across various medical 

modalities, the application of deep learning models 

specifically, generative adversarial networks (GANs) [5,6] 

and  denoising diffusion probabilistic model (DDPM) [7] has 

produced impressive results in the synthesis of realistic and 

diagnostically valuable images. This feature can facilitate 

clinical decision-making, improve illness identification, and 

improve image interpretation.  

However, many studies [3,5, 6] have focused on generating 

two-dimensional (2D) medical images, which overlook the 

rich three dimensional (3D) structural information crucial for 
accurate diagnosis in modalities like MRI and CT. This 

restriction to 2D slices can lead to inconsistencies when 

reconstructing the full 3D anatomy, limiting the model's 

effectiveness in capturing spatial relationships across different 

planes. Another significant limitation in previous work [7] is 

the long inference time required for generating images. In 

medical settings, rapid decision-making is often crucial, and 

prolonged inference times can hinder timely diagnosis and 

treatment. 

In this work, we propose a generative adversarial network 

that utilizes 3D images for cross-modality generation, 
addressing the limitations of previous approaches that rely on 

2D images. By working directly with 3D volumetric data, our 

model is able to capture the full spatial relationships and 

anatomical structures, leading to more accurate and consistent 

results across slices. 
The organization of the subsequent sections of this paper 

is as follows: Section II describes the proposed model. Section 
III discusses the dataset and experimental results, including a 
comparison with existing methods. Lastly, Section IV 
summarizes our findings and conclusions. 
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2. METHOD 

In this section, we describe our model architecture in detail. 

The proposed method consists of two main networks: 

generator and discriminator networks, as illustrated in Figure 

1. The generator network is used to generate fake images to  

fool the discriminator. While the discriminator aims to 

distinguish between real and generated images.  

The architecture of generator network is based on UNet [8] 

model and residual block, as shown in Figure 2. The generator 

network consists of three main modules: encoder, decoder, and 

skip-connection modules. The encoder is responsible for 

capturing patterns in the source image at various levels of 

abstraction, starting with low-level features (e.g., edges) and 

progressing to higher-level, more abstract features (e.g., 

hippocampus region). The decoder progressively restores the 

spatial dimensions and transform features of source domain to 

those of the target domain by performing upsampling and 

directly connecting corresponding layers from the encoder to 

the decoder through the skip connections.  

Figure 2. The architecture of the generator network. 

To enhance the quality of generated images, the 

discriminator network takes a pair of images: one is the source 

image, and the other is either the real target image or the image 

generated by the generator, as shown in Figure 3. The concept 

of the discriminator network is based on PatchGAN  [9], 

which determines whether each patch of the input looks 

realistic, meaning it enforces that the local features in the 

image (e.g., textures, patterns) are consistent with those found 

in real images. If the pair includes the generated image, it is 

labeled as fake (0), and if it includes the real target image, it is 

labeled as real (1). 

To optimize the model’s parameters, we use the loss 

function as follows:  

Figure 3. The architecture of the discriminator network. 

 

𝐿(𝐺, 𝐷) = 𝔼[𝑙𝑜𝑔𝐷(𝑥, 𝑦)] + 𝔼 [log (1 − 𝐷(𝑥, 𝐺(𝑥)))] +

                                                                        𝔼[|𝑦 − 𝐺(𝑥)|]   (1) 

Where x and y are source and target images, respectively; 

G and D are generator and discriminator losses, respectively. 

 

3. EXPERIMENT RESULTS 

3.1 Dataset and Settings 

In this paper, we trained and evaluated on 939 and 100 pairs 

of FLAIR and T1 MRI that collected from AdelaideMRI1. We 

use FLAIR modality as the source image and T1 modality as 

the target image. The size of images is 48×288×240. We use 

Adam optimizer [10] with a learning rate of 0.0001 for 

optimizing the model’s parameters. We set the number of 

epochs as 100. We employed four common metrics to evaluate 

the model performance such as structural similarity (SSIM), 

fréchet inception distance (FID), mean absolute error (MAE), 

and root mean square error (RMSE). 

 

3.2 Experiment results 

  We compared our proposed method with the two existing 

methods (DDPM and Pix2Pix). As can be seen in Table 1, the 
proposed method achieved the best performance across all 

evaluation metrics. We also provide several examples of the 

generated images, as shown in Figure 4. The generated images 

from our model are of good quality and are quite similar to the 

real images, demonstrating the effectiveness of our model. 

Figure 4. Several examples of generated images. 

 

 
Figure 1. The overall architecture of the proposed method. 

Table 1. Performance comparison 

 SSIM↑ FID↓ MAE↓ RMSE↓ 

DDPM[7] 0.8679 47.51 88.77 181.81 

Pix2Pix[3] 0.9359 15.68 33.13 76.83 

Ours 0.9413 16.11 32.59 75.56 

 

1https://adelaidemri.com/ 

- 578 -



ACK 2024 학술발표대회 논문집 (31권 2호)

4. Conclusion 

In this work, we proposed a deep generative adversarial 

network for generating 3D images from a source modality to 

a target modality. By leveraging 3D volumetric data, our 

model effectively captures spatial relationships and 

anatomical structures, resulting in more accurate and 

consistent cross-modality image synthesis. The experiment 

results demonstrated that our proposed method provides a 

good solution for generating missing or complementary 
medical imaging modalities. Future work will focus on further 

improving the model's performance by applying advanced 

deep learning techniques such as attention mechanisms. 
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