• Title/Summary/Keyword: 3D navigation algorithm

Search Result 126, Processing Time 0.023 seconds

Development of Software GPS Receiver for GEO Satellites Using Weak Signal Receiver Algorithm (미약신호 수신 알고리즘을 활용한 정지궤도위성 탑재용 소프트웨어 GPS 수신기 개발)

  • Kim, Chong-Won;Kim, Ghang-Ho;Kee, Chang-Don
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.4
    • /
    • pp.312-318
    • /
    • 2014
  • The altitudes of GEO satellites are higher than those of GPS satellites. Therefore the visibility and the received power of GPS signals are totally different from those of the users near the Earth's surface. In this study, we analyzed the visibility of GPS signals received on GEO satellites. And we also developed a software GPS receiver that works on GEO satellites using CCMDB algorithm which is a weak signal receiver algorithm. GPS signals received on a GEO satellite are generated by a commercial hardware GPS simulator and used for the verification of the developed software GPS receiver. The mean 3D position and velocity error are calculated as 165.636 m and 0.5081 m/s.

Improvement of RRT*-Smart Algorithm for Optimal Path Planning and Application of the Algorithm in 2 & 3-Dimension Environment (최적 경로 계획을 위한 RRT*-Smart 알고리즘의 개선과 2, 3차원 환경에서의 적용)

  • Tak, Hyeong-Tae;Park, Cheon-Geon;Lee, Sang-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.27 no.2
    • /
    • pp.1-8
    • /
    • 2019
  • Optimal path planning refers to find the safe route to the destination at a low cost, is a major problem with regard to autonomous navigation. Sampling Based Planning(SBP) approaches, such as Rapidly-exploring Random Tree Star($RRT^*$), are the most influential algorithm in path planning due to their relatively small calculations and scalability to high-dimensional problems. $RRT^*$-Smart introduced path optimization and biased sampling techniques into $RRT^*$ to increase convergent rate. This paper presents an improvement plan that has changed the biased sampling method to increase the initial convergent rate of the $RRT^*$-Smart, which is specified as m$RRT^*$-Smart. With comparison among $RRT^*$, $RRT^*$-Smart and m$RRT^*$-Smart in 2 & 3-D environments, m$RRT^*$-Smart showed similar or increased initial convergent rate than $RRT^*$ and $RRT^*$-Smart.

DThe Effect of Thickness Ratio and Hight Ratio of Inner Beam on Strength and Stiffness of Frame in Shuttle Car for LMTT (Inner Beam의 두께비 및 높이비가 LMTT용 Shuttle Car의 Frame 강도 및 강성에 미치는 영향)

  • Han, GD.S.;Han, G.J.;Lee, K.S.;Shim, J.J.;Kim, T.H.
    • Journal of Navigation and Port Research
    • /
    • v.28 no.3
    • /
    • pp.207-211
    • /
    • 2004
  • The final goal of this research is to establish the relative dangerousness D/B for factors on seakeeping performance. This D/B is essential to develope the seakeeping performance evaluation system built-on-ship. The system is composed of the apparatus for measuring a vertical acceleration to be generated by the ship's motions, computer for calculating the synthetic seakeeping performance index and monitor for displaying the evaluating diagram of navigational safety of ship. In this paper, a methodology on the establishment of the relative dangerousness D/B for factors on seakeeping performance is presented by a numerical simulations, playing an important role on the algorithm of the program for calculating the synthetic seakeeping performance index. Finally, It is investigated whether the relative dangerousness D/B can be realized an accurate values according to the loading conditions, weather conditions, wave directions end present ship's speed of a model ship.

Development and Usability Testing of a User-Centered 3D Virtual Liver Surgery Planning System

  • Yang, Xiaopeng;Yu, Hee Chul;Choi, Younggeun;Yang, Jae Do;Cho, Baik Hwan;You, Heecheon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.1
    • /
    • pp.37-52
    • /
    • 2017
  • Objective: The present study developed a user-centered 3D virtual liver surgery planning (VLSP) system called Dr. Liver to provide preoperative information for safe and rational surgery. Background: Preoperative 3D VLSP is needed for patients' safety in liver surgery. Existing systems either do not provide functions specialized for liver surgery planning or do not provide functions for cross-check of the accuracy of analysis results. Method: Use scenarios of Dr. Liver were developed through literature review, benchmarking, and interviews with surgeons. User interfaces of Dr. Liver with various user-friendly features (e.g., context-sensitive hotkey menu and 3D view navigation box) was designed. Novel image processing algorithms (e.g., hybrid semi-automatic algorithm for liver extraction and customized region growing algorithm for vessel extraction) were developed for accurate and efficient liver surgery planning. Usability problems of a preliminary version of Dr. Liver were identified by surgeons and system developers and then design changes were made to resolve the identified usability problems. Results: A usability testing showed that the revised version of Dr. Liver achieved a high level of satisfaction ($6.1{\pm}0.8$ out of 7) and an acceptable time efficiency ($26.7{\pm}0.9 min$) in liver surgery planning. Conclusion: Involvement of usability testing in system development process from the beginning is useful to identify potential usability problems to improve for shortening system development period and cost. Application: The development and evaluation process of Dr. Liver in this study can be referred in designing a user-centered system.

Efficient Controlling Trajectory of NPC with Accumulation Map based on Path of User and NavMesh in Unity3D

  • Kim, Jong-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.4
    • /
    • pp.55-61
    • /
    • 2020
  • In this paper, we present a novel approach to efficiently control the location of NPC(Non-playable characters) in the interactive virtual world such as game, virtual reality. To control the NPC's movement path, we first calculate the main trajectory based on the user's path, and then move the NPC based on the weight map. Our method constructs automatically a navigation mesh that provides new paths for NPC by referencing the user trajectories. Our method enables adaptive changes to the virtual world over time and provides user-preferred path weights for smartagent path planning. We have tested the usefulness of our algorithm with several example scenarios from interactive worlds such as video games, virtual reality. In practice, our framework can be applied easily to any type of navigation in an interactive world.

Robust Object Extraction Algorithm in the Sea Environment (해양환경에서 강건한 물표 추적 알고리즘)

  • Park, Jiwon;Jeong, Jongmyeon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.3
    • /
    • pp.298-303
    • /
    • 2014
  • In this paper, we proposed a robust object extraction and tracking algorithm in the IR image sequence acquired in the sea environment. In order to extract size-invariant object, we detect horizontal and vertical edges by using DWT and combine it to generate saliency map. To extract object region, binarization technique is applied to saliency map. The correspondences between objects in consecutive frames are defined by the calculating minimum weighted Euclidean distance as a matching measure. Finally, object trajectories are determined by considering false correspondences such as entering object, vanishing objects and false object and so on. The proposed algorithm can find trajectories robustly, which has shown by experimental results.

Analysis of 3D GIS- Based GNSS Visibility at Urban Area (도심에서의 3차원 GIS 기반 위성항법시스템 가시성 분석)

  • Yoo, Kyung-Ho;Kang, Tae-Sam;Sung, Sang-Kyung;Lee, Eun-Sung;Jeong, Seong-Kyun;Sin, Cheon-Sig;Lee, Sang-Uk;Lee, Young-Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.12
    • /
    • pp.1095-1100
    • /
    • 2007
  • Visibility of the satellite navigation is related to a environmental condition of a receiver. Obstacles like buildings and trees in urban areas can block signals and have effects on accuracy and reliability of positioning. This paper presents a method of creating 3D analysis model of urban canyon of Seoul using three-Dimensional digital map. Analysis techniques of visible satellites with Ray-Polygon Collision Detection and validation of algorithm through field tests are discussed. We have compared and analyzed the visibility of GPS and Galileo with respect to separate and simultaneous tracking in view of DOP (Dilution of Precision) using the 3D GIS digital map.

Three-Dimensional Container Packing Problem with Freight Priority (우선순위를 고려한 컨테이너 3차원 적재문제)

  • Bae, Min-Ju;Choi, Se-Kyoung;Kim, Hwan-Seong
    • Journal of Navigation and Port Research
    • /
    • v.28 no.6
    • /
    • pp.531-539
    • /
    • 2004
  • In this paper, we propose a new heuristic solution for 3D container packing problem for the variable sizes and types of freight. Frist of all, we consider the total cost of container charge i.e., handling, loading and transportation, where each freight will be specifically identified The types of containers and its number to be loaded am be selected automatically by minimizing the total cost of container charge. Maximization of loading space am be achieved efficiently by operating the palletizing and/or depalletizing of freight. By considering these factors we can determine the position of freight in the container and the loading sequence to be packing into the container. In container packing simulation, we can verify that the proposed heuristic algorithm indicates more efficiency space utilization and shows the possibility of using on commercial business.

Performance Analysis of STBC System Combined with Convolution Code fot Improvement of Transmission Reliability (전송신뢰성의 향상을 위해 STBC에 컨볼루션 코드를 연계한 시스템의 성능분석)

  • Shin, Hyun-Jun;Kang, Chul-Gyu;Oh, Chang-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.6
    • /
    • pp.1068-1074
    • /
    • 2011
  • In this paper, the proposed scheme is STBC(space-time block codes) system combined with convolution code which is the most popular channel coding to ensure the reliability of data transmission for a high data rate wireless communication. The STBC is one of MIMO(multi-input multi-output) techniques. In addition, this scheme uses a modified viterbi algorithm in order to get a high system gain when data is transmitted. Because we combine STBC and convolution code, the proposed scheme has a little high quantity of computation but it can get a maximal diversity gain of STBC and a high coding gain of convolution code at the same time. Unlike existing viterbi docoding algorithm using Hamming distance in order to calculate branch matrix, the modified viterbi algorithm uses Euclidean distance value between received symbol and reference symbol. Simulation results show that the modified viterbi algorithm improved gain 7.5 dB on STBC 2Tx-2Rx at $BER=10^{-2}$. Therefore the proposed scheme using STBC combined with convolution code can improve the transmission reliability and transmission efficiency.

Relative Localization for Mobile Robot using 3D Reconstruction of Scale-Invariant Features (스케일불변 특징의 삼차원 재구성을 통한 이동 로봇의 상대위치추정)

  • Kil, Se-Kee;Lee, Jong-Shill;Ryu, Je-Goon;Lee, Eung-Hyuk;Hong, Seung-Hong;Shen, Dong-Fan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.4
    • /
    • pp.173-180
    • /
    • 2006
  • A key component of autonomous navigation of intelligent home robot is localization and map building with recognized features from the environment. To validate this, accurate measurement of relative location between robot and features is essential. In this paper, we proposed relative localization algorithm based on 3D reconstruction of scale invariant features of two images which are captured from two parallel cameras. We captured two images from parallel cameras which are attached in front of robot and detect scale invariant features in each image using SIFT(scale invariant feature transform). Then, we performed matching for the two image's feature points and got the relative location using 3D reconstruction for the matched points. Stereo camera needs high precision of two camera's extrinsic and matching pixels in two camera image. Because we used two cameras which are different from stereo camera and scale invariant feature point and it's easy to setup the extrinsic parameter. Furthermore, 3D reconstruction does not need any other sensor. And the results can be simultaneously used by obstacle avoidance, map building and localization. We set 20cm the distance between two camera and capture the 3frames per second. The experimental results show :t6cm maximum error in the range of less than 2m and ${\pm}15cm$ maximum error in the range of between 2m and 4m.