• Title/Summary/Keyword: 3D motion capture

Search Result 216, Processing Time 0.023 seconds

Validity of a Portable APDM Inertial Sensor System for Stride Time and Stride Length during Treadmill Walking

  • Tack, Gye Rae;Choi, Jin Seung
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.1
    • /
    • pp.53-58
    • /
    • 2017
  • Objective: The purpose of this study was to compare the accuracy of stride time and stride length provided by a commercial APDM inertial sensor system (APDM) with the results of three dimensional motion capture system (3D motion) during treadmill walking. Method: Five healthy men participated in this experiment. All subjects walked on the treadmill for 3 minutes at their preferred walking speed. The 3D motion and the APDM were simultaneously used for extracting gait variables such as stride time and stride length. Mean difference and root mean squared (RMS) difference were used to compare the measured gait variables from the two measurement devices. The regression equation derived from the range of motion of the lower limb was also applied to correct the error of stride length. Results: The stride time extracted from the APDM was almost the same as that from the 3D motion (the mean difference and RMS difference were less than 0.0001 sec and 0.0085 sec, respectively). For stride length, mean difference and RMS difference were less than 0.1141 m and 0.1254 m, respectively. However, after correction of the stride length error using the derived regression equation, the mean difference and the RMS difference decreased to 0.0134 m and 0.0556 m or less, respectively. Conclusion: In this study, we confirmed the possibility of using the temporal variables provided from the APDM during treadmill walking. By applying the regression equation derived only from the range of motion provided by the APDM, the error of the spatial variable could be reduced. Although further studies are needed with additional subjects and various walking speeds, these results may provide the basic data necessary for using APDM in treadmill walking.

A Synchronized Playback Method of 3D Model and Video by Extracting Golf Swing Information from Golf Video (골프 동영상으로부터 추출된 스윙 정보를 활용한 3D 모델과 골프 동영상의 동기화 재생)

  • Oh, Hwang-Seok
    • Journal of the Korean Society for Computer Game
    • /
    • v.31 no.4
    • /
    • pp.61-70
    • /
    • 2018
  • In this paper, we propose a synchronized playback method of 3D reference model and video by extracting golf swing information from learner's golf video to precisely compare and analyze each motion in each position and time in the golf swing, and present the implementation result. In order to synchronize the 3D model with the learner's swing video, the learner's golf swing movie is first photographed and relative time information is extracted from the photographed video according to the position of the golf club from the address posture to the finishing posture. Through applying time information from learners' swing video to a 3D reference model that rigs the motion information of a pro-golfer's captured swing motion at 120 frames per second through high-quality motion capture equipment into a 3D model and by synchronizing the 3D reference model with the learner's swing video, the learner can correct or learn his / her posture by precisely comparing his or her posture with the reference model at each position of the golf swing. Synchronized playback can be used to improve the functionality of manually adjusting system for comparing and analyzing the reference model and learner's golf swing. Except for the part where the image processing technology that detects each position of the golf posture is applied, It is expected that the method of automatically extracting the time information of each location from the video and of synchronized playback can be extended to general life sports field.

Dynamic Drape Simulation of Clothes in 3D Apparel CAD Using Motion Capture Data (모션 캡쳐 데이터를 이용한 의복의 동적 드레이프 시뮬레이션)

  • 설인환;김성민;강태진
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.142-144
    • /
    • 2003
  • 3차원 apparel CAD system개발에 있어서 직물의 드레이프 모사가 걸림돌이 되어왔다. 최근 컴퓨터의 속도 개선으로 인해 정적 드레이프의 경우 데이블 보 문제와 같이 적절한 시간내에 드레이프 모사가 이루어지고 있다. 그러나 드레이프는 cloth와 body간의 충돌 검사에 많은 시간이 소요되므로 virtual fashion show와 같이 인체가 운동하는 동적 드레이프의 경우는 아직도 어려운 문제이다. (중략)

  • PDF

Three-dimensional finite element analysis of unilateral mastication in malocclusion cases using cone-beam computed tomography and a motion capture system

  • Yang, Hun-Mu;Cha, Jung-Yul;Hong, Ki-Seok;Park, Jong-Tae
    • Journal of Periodontal and Implant Science
    • /
    • v.46 no.2
    • /
    • pp.96-106
    • /
    • 2016
  • Purpose: Stress distribution and mandible distortion during lateral movements are known to be closely linked to bruxism, dental implant placement, and temporomandibular joint disorder. The present study was performed to determine stress distribution and distortion patterns of the mandible during lateral movements in Class I, II, and III relationships. Methods: Five Korean volunteers (one normal, two Class II, and two Class III occlusion cases) were selected. Finite element (FE) modeling was performed using information from cone-beam computed tomographic (CBCT) scans of the subjects' skulls, scanned images of dental casts, and incisor movement captured by an optical motion-capture system. Results: In the Class I and II cases, maximum stress load occurred at the condyle of the balancing side, but, in the Class III cases, the maximum stress was loaded on the condyle of the working side. Maximum distortion was observed on the menton at the midline in every case, regardless of loading force. The distortion was greatest in Class III cases and smallest in Class II cases. Conclusions: The stress distribution along and accompanying distortion of a mandible seems to be affected by the anteroposterior position of the mandible. Additionally, 3-D modeling of the craniofacial skeleton using CBCT and an optical laser scanner and reproduction of mandibular movement by way of the optical motion-capture technique used in this study are reliable techniques for investigating the masticatory system.

Stabilized 3D Pose Estimation of 3D Volumetric Sequence Using 360° Multi-view Projection (360° 다시점 투영을 이용한 3D 볼류메트릭 시퀀스의 안정적인 3차원 자세 추정)

  • Lee, Sol;Seo, Young-ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.76-77
    • /
    • 2022
  • In this paper, we propose a method to stabilize the 3D pose estimation result of a 3D volumetric data sequence by matching the pose estimation results from multi-view. Draw a circle centered on the volumetric model and project the model from the viewpoint at regular intervals. After performing Openpose 2D pose estimation on the projected 2D image, the 2D joint is matched to localize the 3D joint position. The tremor of 3D joints sequence according to the angular spacing was quantified and expressed in graphs, and the minimum conditions for stable results are suggested.

  • PDF

2.5D human pose estimation for shadow puppet animation

  • Liu, Shiguang;Hua, Guoguang;Li, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2042-2059
    • /
    • 2019
  • Digital shadow puppet has traditionally relied on expensive motion capture equipments and complex design. In this paper, a low-cost driven technique is presented, that captures human pose estimation data with simple camera from real scenarios, and use them to drive virtual Chinese shadow play in a 2.5D scene. We propose a special method for extracting human pose data for driving virtual Chinese shadow play, which is called 2.5D human pose estimation. Firstly, we use the 3D human pose estimation method to obtain the initial data. In the process of the following transformation, we treat the depth feature as an implicit feature, and map body joints to the range of constraints. We call the obtain pose data as 2.5D pose data. However, the 2.5D pose data can not better control the shadow puppet directly, due to the difference in motion pattern and composition structure between real pose and shadow puppet. To this end, the 2.5D pose data transformation is carried out in the implicit pose mapping space based on self-network and the final 2.5D pose expression data is produced for animating shadow puppets. Experimental results have demonstrated the effectiveness of our new method.

A Study of Sensing Locations for ECG Monitoring Clothing based on the Skin Change rate (체표 변화에 기반한 심전도 모니터링 의류의 센싱 위치 연구)

  • Cho, Hakyung;Cho, Sang woo
    • Fashion & Textile Research Journal
    • /
    • v.17 no.5
    • /
    • pp.844-853
    • /
    • 2015
  • Recently, according to change of lifestyle and increase of concerning in health, needs of the smart clothing based on the vital sign monitoring have increased. Along with this trend, smart clothing for ECG monitoring has been studied various way as textile electrode, clothing design and so on. Smart clothing for ECG monitoring can become a comfortable system which enables continuous vital sign monitoring in daily use. But, smart clothing for ECG monitoring has a weakness on artifact during motion. One of the motion artifact caused by shifting of the electrode position was affected skin change by motion. The aim of this study was to suggest electrode locations for clothing of ECG monitoring to reduce of motion artifacts. Therefore, change of skin surface during the movement were measured and analyzed in order to find location to minimize motion artifacts in ECG monitoring clothing by 3D motion capture. For the experiment, the subjects consisted of 5 males and 5 females in their 20' with average physique. As a result, the optimal location for ECG monitoring was deducted under the bust line and scapula which have least motion artifact. These locations were abstracted to be least affected by movement in this research.

3D Game Control using Gesture Recognition (동작 인식기를 이용한 3D 게임 제어)

  • Lee, Jae-Ho;Park, Chang-Joon;Lee, In-Ho
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.1348-1353
    • /
    • 2006
  • 본 논문은 3 차원 게임 제어를 위한 인간의 동작인식에 대하여 기술하고 있다. 사용자의 편의성을 위하여 게임에 직관적으로 적용할 수 있는 인간의 동작들을 마커프리 모션 캡쳐 장비를 이용하여 취득하고, 이를 실시간으로 인식하는 동작 인식 시스템을 개발하였다. 또한, 개발된 동작인식기를 이용한 3차원 게임으로의 응용시스템의 접근 방식에 대하여 기술하고 있다. 개발된 동작 인식기는 LDA 방식에 기반을 둔 확률적 접근 방식으로 실시간으로 빠르고 정확하게 응용 시스템에 필요한 인간의 동작을 구별할 수 있도록 설계되었다. 개발된 시스템에서는 인식된 결과를 실시간으로 실제 어플리케이션에 전달하여 그 결과를 직접 사용자가 판단하여 다음 동작을 수행 할 수 있도록 되어 있다. 본 논문은, 이러한 실제 시스템의 개발을 통하여, 3 차원 인간 동작의 간단하고 유용한 활용 방법에 대한 해법을 제시하고 있다.

  • PDF

Characteristics of Pelvic Ranges According to Artificial Leg Length Discrepancy During Gait: Three-Dimensional Analysis in Healthy Individuals (보행 중 인위적 다리길이 차이에 따른 3차원적 골반 가동범위의 특성)

  • Kim, Yongwook
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.7 no.2
    • /
    • pp.59-67
    • /
    • 2019
  • Purpose : The purpose of this study was to analyze the dynamic range of motion (ROM) of pelvic and translation of center of mass (COM) when wearing different shoe insole lifts according to leg length discrepancy (LLD) during free speed gait. Methods : Thirty-five healthy adults were participated in this study. Kinematic data were collected using a Vicon motion capture system. Reflective and cluster 40 markers attached to participants lower extremities and were asked to walk in a 6 m gait way under three different shoe lift conditions (without any insole, 1 cm insole, and 2 cm insole). The pelvic ROM and COM translation in three planes were sorted using a Nexus software, and a Visual3D motion analysis software was used to coordinate all kinematic data. Results : There were significantly increased maximal pelvic elevation and total pelvic range in coronal plane when wearing a standard shoe with 2 cm insole lift during gait (p<.05). When wearing a standard shoe with 2 cm insole lift, the total range of the pelvic segment were significantly different in all three motion planes (p<.05). Conclusion : Although LLD of less than 2 cm develops abnormal movement pattern of the pelvis and may cause of musculoskeletal diseases such as low back pain, hip and knee joint osteoarthritis, therefore intensive various physical therapy interventions for LLD are needed.

Effects of Hallux Valgus Orthoses on Ground Reaction Force Using 3D Motion Analysis in Individuals With Hallux Valgus Deformity

  • Kim, Yong-wook
    • Physical Therapy Korea
    • /
    • v.27 no.4
    • /
    • pp.227-232
    • /
    • 2020
  • Background: Hallux valgus (HV) is a foot deformity developed by mediolateral deviation of the first metatarsophalangeal joint. Although various foot-toe orthoses were used to correct the HV angle, verification of the effects of kinetics variables such as ground reaction force (GRF) through three-dimensional (3D) gait analysis according to the various type of orthoses for HV is insufficient. Objects: This study aimed to investigate the effect of soft and hard types of foot and toe orthoses to correct HV deformity on the GRF in individuals with HV using 3D motion analysis system during walking. Methods: Twenty-six subjects participated in the experiment. Participants had HV angle of more than 15° in both feet. Two force platforms were used to obtain 3D GRF data for both feet and a 3D motion capture system with six infrared cameras was used to measure exact stance phase point such as heel strike or toe off period. Total walk trials of each participant were 8 to 10, the walkway length was 6 m. Two-way repeated measures ANOVA was used to determine the effects of each orthosis condition on the various GRF values. Results: The late anteroposterior maximal force and a first vertical peak force of the GRF showed that the hard type orthosis condition significantly increased GRF compared to the other orthosis conditions (p < 0.05). Conclusion: There were significant effects in GRF values when wearing the hard type foot orthosis. However, the hard type foot orthosis was uncomfortable to wear during walking. Therefore, it is necessary to develop a new foot-toe orthosis that can compensate for these disadvantages.