• Title/Summary/Keyword: 3D image reconstruction

Search Result 591, Processing Time 0.026 seconds

The accuracy of the imaging reformation of cone beam computed tomography for the assessment of bone defect healing (골결손부 치유과정에서 cone beam형 전산화단층영상의 정확도)

  • Kang, Ho-Duk;Kim, Gyu-Tae;Choi, Yong-Suk;Hwang, Eui-Hwan
    • Imaging Science in Dentistry
    • /
    • v.37 no.2
    • /
    • pp.69-77
    • /
    • 2007
  • Purpose: To evaluate the accuracy of the imaging reformation of cone beam computed tomography for the assessment of bone defect healing in rat model. Materials and Methods: Sprague-Dawley strain rats weighing about 350 gms were selected. Then critical size bone defects were done at parietal bone with implantation of collagen sponge. The rats were divided into seven groups of 3 days, 1 week, 2 weeks, 3 weeks, 4 weeks, 6 weeks, and 8 weeks. The healing of surgical defect was assessed by multi planar reconstruction (MPR) images and three-dimensional (3-D) images of cone beam computed tomography, compared with soft X-ray radiograph and histopathologic examination. Results: MPR images and 3-D images showed similar reformation of the healing amount at 3 days, 1 week, 2 weeks, and 8 weeks, however, lower reformation at 3 weeks, 4 weeks, and 6 weeks. According to imaging-based methodologies, MPR image revealed similar reformation of the healing amount than 3-D images compare with soft X-ray image. Among the four threshold values for 3-D images, 400-500 HU revealed similar reformation of the healing amount. Histopathologic examination confirmed the newly formed trabeculation correspond with imaging-based methologies. Conclusion: MPR images revealed higher accuracy of the imaging reformation of cone beam computed tomography and cone beam computed tomography is a clinically useful diagnostic tool for the assessment of bone defect healing.

  • PDF

Digital Image Processing Using Tunable Q-factor Discrete Wavelet Transformation (Q 인자의 조절이 가능한 이산 웨이브렛 변환을 이용한 디지털 영상처리)

  • Shin, Jong Hong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.3
    • /
    • pp.237-247
    • /
    • 2014
  • This paper describes a 2D discrete-time wavelet transform for which the Q-factor is easily specified. Hence, the transform can be tuned according to the oscillatory behavior of the image signal to which it is applied. The tunable Q-factor wavelet transform (TQWT) is a fully-discrete wavelet transform for which the Q-factor, Q, of the underlying wavelet and the asymptotic redundancy (over-sampling rate), r, of the transform are easily and independently specified. In particular, the specified parameters Q and r can be real-valued. Therefore, by tuning Q, the oscillatory behavior of the wavelet can be chosen to match the oscillatory behavior of the signal of interest, so as to enhance the sparsity of a sparse signal representation. The TQWT is well suited to fast algorithms for sparsity-based inverse problems because it is a Parseval frame, easily invertible, and can be efficiently implemented. The TQWT can also be used as an easily-invertible discrete approximation of the continuous wavelet transform. The transform is based on a real valued scaling factor (dilation-factor) and is implemented using a perfect reconstruction over-sampled filter bank with real-valued sampling factors. The transform is parameterized by its Q-factor and its oversampling rate (redundancy), with modest oversampling rates (e. g. 3-4 times overcomplete) being sufficient for the analysis/synthesis functions to be well localized. Therefore, This method services good performance in image processing fields.

3D Reconstruction Using Segmentation of Myocardial SPECT (SPECT 심근영상의 영상분할을 이용한 3차원 재구성)

  • Jung, Jae-Eun;Lee, Jun-Haeng;Choi, Seok-Yoon;Lee, Sang-Bock
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.6
    • /
    • pp.2240-2245
    • /
    • 2010
  • Myocardial imaging in SPECT (Single Photon Emission Computed tomography) scan of the gamma-ray emitting radiopharmaceuticals to patients after intravenous radiopharmaceuticals evenly spread in the heart region of interest by recording changes in the disease caused by a computer using the PSA test is to diagnose. Containing information on the functional myocardial perfusion imaging is a useful way to examine non-invasive heart disease, but the argument by noise and low resolution of the physical landscape that is difficult to give. For this paper, the level of myocardial imaging by using the three algorithms to split the video into 3-D implementation of the partitioned area to help you read the proposed plan. To solve the difficulty of reading level, interest in using the sheet set, partitioned area of the left ventricle was ranked the partitioned area was modeled as a 3-D images.

Realistic individual 3D face modeling (사실적인 3D 얼굴 모델링 시스템)

  • Kim, Sang-Hoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.8
    • /
    • pp.1187-1193
    • /
    • 2013
  • In this paper, we present realistic 3D head modeling and facial expression systems. For 3D head modeling, we perform generic model fitting to make individual head shape and texture mapping. To calculate the deformation function in the generic model fitting, we determine correspondence between individual heads and the generic model. Then, we reconstruct the feature points to 3D with simultaneously captured images from calibrated stereo camera. For texture mapping, we project the fitted generic model to image and map the texture in the predefined triangle mesh to generic model. To prevent extracting the wrong texture, we propose a simple method using a modified interpolation function. For generating 3D facial expression, we use the vector muscle based algorithm. For more realistic facial expression, we add the deformation of the skin according to the jaw rotation to basic vector muscle model and apply mass spring model. Finally, several 3D facial expression results are shown at the end of the paper.

3D Accuracy Analysis of Mobile Phone-based Stereo Images (모바일폰 기반 스테레오 영상에서 산출된 3차원 정보의 정확도 분석)

  • Ahn, Heeran;Kim, Jae-In;Kim, Taejung
    • Journal of Broadcast Engineering
    • /
    • v.19 no.5
    • /
    • pp.677-686
    • /
    • 2014
  • This paper analyzes the 3D accuracy of stereo images captured from a mobile phone. For 3D accuracy evaluation, we have compared the accuracy result according to the amount of the convergence angle. In order to calculate the 3D model space coordinate of control points, we perform inner orientation, distortion correction and image geometry estimation. And the quantitative 3D accuracy was evaluated by transforming the 3D model space coordinate into the 3D object space coordinate. The result showed that relatively precise 3D information is generated in more than $17^{\circ}$ convergence angle. Consequently, it is necessary to set up stereo model structure consisting adequate convergence angle as an measurement distance and a baseline distance for accurate 3D information generation. It is expected that the result would be used to stereoscopic 3D contents and 3D reconstruction from images captured by a mobile phone camera.

SURGICAL STENT FABRICATION AND CLINICAL APPLICATION FOR ORTHOGNATHIC SURGERY USING Cone-Beam CT (Cone-Beam CT를 이용한 악교정 수술용 스텐트 제작과 임상 적용)

  • Kim, Yong-Il;Kim, Jong-Ryoul;Kim, Seong-Sik;Son, Woo-Sung;Park, Soo-Byung
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.2
    • /
    • pp.158-166
    • /
    • 2009
  • The application of CT with basis on 3 dimensional-reconstruction is getting more widely practiced. With the data obtained from cone-beam computed tomography(CBCT), not only the diagnosis of the patient with skeletal abnormality but also the virtual simulation of the orthognathic surgery were performed and its application would be popular in orthodontic field. We reported a case, a 19-year old man who was diagnosed mandibular prognathism and required orthognatic surgery. In this case, the virtual orthognathic surgery was simulated and surgical wafer was fabricated by using CBCT data. That wafer was applied the actual orthognathic surgery. After preoperative orthodontic treatment, we prepared surgery as follows. : (l)Acquisition of 3D image data, (2)Reconstruction of 3-dimensional virtual model, (3)Virtual model surgery, (4)Extraction of stere-olithographic image, (5)Check-up for occlusal interference, (6)Fabrication of surgical stent by stereolithography. Bilateral sagittal split ramus osteotomy was operated and used stereolithographic surgical stent. 1 month later, we superimposed CBCT datas of virtual surgery and that of actual surgery, and then compared the result. CT data's application for othognathic surgery yielded satisfactory outcomes.

Usefulness Evaluation of HRCT using Reconstruction in Chest CT (흉부CT 검사 시 HRCT 영상 재구성의 유용성)

  • Park, Sung-Min;Kim, Keung-Sik;Kang, Seong-Min;Yoo, Beong-Gyu;Lee, Ki-Bae
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.17 no.1
    • /
    • pp.13-18
    • /
    • 2015
  • Purpose : Skip the repetitive HRCT axial scan in order to reduce the exposure of patients during chest HRCT scan, Helical Scan Data into a reconstructed image, and exposure of the patient change and visually evaluate the usefulness of the HRCT images. Materials and method : Patients were enrolled in the survey are 50 people who underwent chest CT scans of patients who presented to the hospital from January 2015 to March 2015. 50 people surveyed 22 people men and 28 people women people showed an average distribution of 30 to 80 years age was 48 years. 50 patients to Somatom Sensation 64 ch (Siemens) model with 120 kVp tube voltage to a reference mAs tube current to mAs (Care dose, Siemens) as a whole, including the lungs and the chest CT scan was performed. Scan upon each patient CARE dose 4D (Automatic exposure control, Siemens Medical Solution Erlangen, Germany) was to maintain the proper radiation dose scan every cross-section through a device that automatically adjusts the tube current of. CT scan is the rotation time of the Tube slice collimation, slice width 0.6 mm, pitch factor was made under the terms of 1.4. CT scan obtained after the raw data (raw data) to the upper surface of the axial images and coronal images for each slice thickness 1 mm, 5 mm intervals in the high spatial frequency calculation method (hight spatial resolution algorithm, B60 sharp) was the use of the lung window center -500 HU, windows were reconstructed into images in the interval -1000 HU to see. Result : 1. Measure the total value of DLP 50 patients who proceed to chest CT group A (Helical Scan after scan performed with HRCT) and group B (Helical Scan after the HR image reconstruction to the original data) compared with the group divided, analysis As a result of the age, but show little difference for each age group it had a decreased average dose of about 9%. 2. A Radiation read the results of the two Radiologist and a doctor upper lobe and middle lobe of the lung takes effect the visual evaluation is not a big difference between the two images both, depending on the age of the patient, especially if the blood vessels of the lower lobe (A: 3.4, B: 4.6) and bronchi(A: 3.8, B4.7) image shake caused by breathing in anxiety (blurring lead) to the original data (raw data) showed that the reconstructed image is been more useful in diagnostic terms. Conclusion : Scan was confirmed a continuous, rapid motion video to get Helical scan is much lower lobe lung reduction in visual blurring, Helical scan data to not repeat the examination by obtaining HRCT images reorganization reduced the exposure of the patient.

  • PDF

3D Shape Descriptor for Segmenting Point Cloud Data

  • Park, So Young;Yoo, Eun Jin;Lee, Dong-Cheon;Lee, Yong Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.6_2
    • /
    • pp.643-651
    • /
    • 2012
  • Object recognition belongs to high-level processing that is one of the difficult and challenging tasks in computer vision. Digital photogrammetry based on the computer vision paradigm has begun to emerge in the middle of 1980s. However, the ultimate goal of digital photogrammetry - intelligent and autonomous processing of surface reconstruction - is not achieved yet. Object recognition requires a robust shape description about objects. However, most of the shape descriptors aim to apply 2D space for image data. Therefore, such descriptors have to be extended to deal with 3D data such as LiDAR(Light Detection and Ranging) data obtained from ALS(Airborne Laser Scanner) system. This paper introduces extension of chain code to 3D object space with hierarchical approach for segmenting point cloud data. The experiment demonstrates effectiveness and robustness of the proposed method for shape description and point cloud data segmentation. Geometric characteristics of various roof types are well described that will be eventually base for the object modeling. Segmentation accuracy of the simulated data was evaluated by measuring coordinates of the corners on the segmented patch boundaries. The overall RMSE(Root Mean Square Error) is equivalent to the average distance between points, i.e., GSD(Ground Sampling Distance).

Multi-Depth Map Fusion Technique from Depth Camera and Multi-View Images (깊이정보 카메라 및 다시점 영상으로부터의 다중깊이맵 융합기법)

  • 엄기문;안충현;이수인;김강연;이관행
    • Journal of Broadcast Engineering
    • /
    • v.9 no.3
    • /
    • pp.185-195
    • /
    • 2004
  • This paper presents a multi-depth map fusion method for the 3D scene reconstruction. It fuses depth maps obtained from the stereo matching technique and the depth camera. Traditional stereo matching techniques that estimate disparities between two images often produce inaccurate depth map because of occlusion and homogeneous area. Depth map obtained from the depth camera is globally accurate but noisy and provide a limited depth range. In order to get better depth estimates than these two conventional techniques, we propose a depth map fusion method that fuses the multi-depth maps from stereo matching and the depth camera. We first obtain two depth maps generated from the stereo matching of 3-view images. Moreover, a depth map is obtained from the depth camera for the center-view image. After preprocessing each depth map, we select a depth value for each pixel among them. Simulation results showed a few improvements in some background legions by proposed fusion technique.

Time Series Image Stereo Matching Experiment Using the Overlap Method (중첩 방식을 이용한 시계열 영상의 스테레오 정합 실험)

  • Kim, Kang San;Pyeon, Mu Wook;Kim, Jong Hwa;Moon, Kwang Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.1
    • /
    • pp.123-128
    • /
    • 2015
  • In this study, experimented how to increase corresponding points which are obtained through stereo matching for dense 3D reconstruction. After extracting a snapshot image from the images acquired through stereo CCTVs, the matching points obtained using the SIFT matching and RANSAC procedure were gradually overlapped. In conclusion, it was confirmed that as images are overlapped, the number of matching points continues to grow.