• Title/Summary/Keyword: 3D image reconstruction

Search Result 591, Processing Time 0.037 seconds

3D Reconstructed Image of Neck Mass to Improve Patient's Understanding (경부 종물 환자의 이해도 개선을 위한 3차원 재건 영상의 활용)

  • Yoo, Young-Sam
    • Korean Journal of Head & Neck Oncology
    • /
    • v.26 no.2
    • /
    • pp.193-197
    • /
    • 2010
  • Objectives : Patients with neck tumor and their family need every information about the disease. Especially, the size and location are confusing with verbal information. With the aid of CT, the problem had some answer, but it needs some medical education. We would like to know the usefullness of 3D reconstructed images in patient education about the disease. Material and Methods : Neck CT data were collected from 10 patients with various neck tumors and converted to 3D reconstructed images. Understanding of the patients about the size and location of tumors were rated from questionaires using axial CT images and 3D images. Results : Understanding score about 3D images were greater than that of CT images(p<0.006). Conclusion : 3D reconstructed images of CT could give the patients more real visual information about the disease.

3D Environmental Walkthrough Using The Integration of Multiple Segmentation Based Environment Models (다중 분할 기반 환경 모델의 통합에 의한 3차원 환경 탐색)

  • Ryoo, Seung-Taek
    • The Journal of Korean Association of Computer Education
    • /
    • v.8 no.1
    • /
    • pp.105-115
    • /
    • 2005
  • An environment model that is constructed using a single image has the problem of a blurring effect caused by the fixed resolution, and the stretching effect of the 3D model caused when information that does not exist on the image occurs due to the occlusion. This paper introduces the registration and integration method using multiple images to resolve the above problem. This method can represent parallax effect and expand the environment model to represent wide range of environment. The segmentation-based environment modeling method using multiple images can build a detail model with optimal resolution.

  • PDF

Vision-based Obstacle Detection using Geometric Analysis (기하학적 해석을 이용한 비전 기반의 장애물 검출)

  • Lee Jong-Shill;Lee Eung-Hyuk;Kim In-Young;Kim Sun-I.
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.3 s.309
    • /
    • pp.8-15
    • /
    • 2006
  • Obstacle detection is an important task for many mobile robot applications. The methods using stereo vision and optical flow are computationally expensive. Therefore, this paper presents a vision-based obstacle detection method using only two view images. The method uses a single passive camera and odometry, performs in real-time. The proposed method is an obstacle detection method using 3D reconstruction from taro views. Processing begins with feature extraction for each input image using Dr. Lowe's SIFT(Scale Invariant Feature Transform) and establish the correspondence of features across input images. Using extrinsic camera rotation and translation matrix which is provided by odometry, we could calculate the 3D position of these corresponding points by triangulation. The results of triangulation are partial 3D reconstruction for obstacles. The proposed method has been tested successfully on an indoor mobile robot and is able to detect obstacles at 75msec.

Concepts of System Function and Modulation-Demodulation based Reconstruction of a 3D Object Coordinates using Active Method (시스템 함수 및 변복조 개념 적용 능동 방식 3차원 물체 좌표 복원)

  • Lee, Deokwoo;Kim, Jisu;Park, Cheolhyeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.530-537
    • /
    • 2019
  • In this paper we propose a novel approach to representation of the 3D reconstruction problem by employing a concept of system function that is defined as the ratio of the output to the input signal. Akin to determination of system function (or system response), this paper determines system function by choosing (or defining) appropriate input and output signals. In other words, the 3D reconstruction using structured circular light patterns is reformulated as determination of system function from input and output signals. This paper introduces two algorithms for the reconstruction. The one defines the input and output signals as projected circular light patterns and the images overlaid with the patterns and captured by camera, respectively. The other one defines input and output signals as 3D coordinates of the object surface and the image captured by camera. The first one leads to the problem as identifying the system function and the second one leads to the problem as estimation of an input signal employing concept of modulation-demodulation theory. This paper substantiate the proposed approach by providing experimental results.

VR, AR Simulation and 3D Printing for Shoulder and Elbow Practice (VR, AR 시뮬레이션 및 3D Printing을 활용한 어깨와 팔꿈치 수술실습)

  • Lim, Wonbong;Moon, Young Lae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.12
    • /
    • pp.175-179
    • /
    • 2016
  • Recent advances in technology of medical image have made surgical simulation that is helpful to diagnosis, operation plan, or education. Improving and enhancing the medical imaging have led to the availability of high definition images and three-dimensional (3D) visualization, it allows a better understanding in the surgical and educational field. The Real human field of view is stereoscopic. Therefore, with just 2D images, stereoscopic reconstruction process through the surgeon's head, is necessary. To reduce these process, 3D images have been used. 3D images enhanced 3D visualization, it provides significantly shorter time for surgeon for judgment in complex situations. Based on 3D image data set, virtual medical simulations, such as virtual endoscopy, surgical planning, and real-time interaction, have become possible. This article describes principles and recent applications of newer imaging techniques and special attention is directed towards medical 3D reconstruction techniques. Recent advances in technology of CT, MR and other imaging modalities has resulted in exciting new solutions and possibilities of shoulder imaging. Especially, three-dimensional (3D) images derived from medical devices provides advanced information. This presentation describes the principles and potential applications of 3D imaging techniques, simulation and printing in shoulder and elbow practice.

A Study of 3D World Reconstruction and Dynamic Object Detection using Stereo Images (스테레오 영상을 활용한 3차원 지도 복원과 동적 물체 검출에 관한 연구)

  • Seo, Bo-Gil;Yoon, Young Ho;Kim, Kyu Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.326-331
    • /
    • 2019
  • In the real world, there are both dynamic objects and static objects, but an autonomous vehicle or mobile robot cannot distinguish between them, even though a human can distinguish them easily. It is important to distinguish static objects from dynamic objects clearly to perform autonomous driving successfully and stably for an autonomous vehicle or mobile robot. To do this, various sensor systems can be used, like cameras and LiDAR. Stereo camera images are used often for autonomous driving. The stereo camera images can be used in object recognition areas like object segmentation, classification, and tracking, as well as navigation areas like 3D world reconstruction. This study suggests a method to distinguish static/dynamic objects using stereo vision for an online autonomous vehicle and mobile robot. The method was applied to a 3D world map reconstructed from stereo vision for navigation and had 99.81% accuracy.

3D Point Clouds Encryption Method and Analysis of Encryption Ratio in Holographic Reconstruction Image (3D 공간정보 암호화 기법과 홀로그래픽 복원영상의 암호화 효율 분석)

  • Choi, Hyun-Jun;Seo, Young-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.9
    • /
    • pp.1703-1710
    • /
    • 2017
  • This paper propose a 3D point clouds (depth) security technique for digital holographic display service. Image contents encryption is a method to provide only authorized right owners with the original image information by encrypting the entire image or a part of the image. The proposed method detected an edge from a depth and performed quad tree decomposition, and then performed encryption. And encrypts the most significant block among the divided blocks. The encryption effect was evaluated numerically and visually. The experimental results showed that encrypting only 0.43% of the entire data was enough to hide the constants of the original depth. By analyzing the encryption amount and the visual characteristics, we verified a relationship between the threshold for detecting an edge-map. As the threshold for detecting an edge increased, the encryption ratio decreased with respect to the encryption amount.

3D Analysis of Scene and Light Environment Reconstruction for Image Synthesis (영상합성을 위한 3D 공간 해석 및 조명환경의 재구성)

  • Hwang, Yong-Ho;Hong, Hyun-Ki
    • Journal of Korea Game Society
    • /
    • v.6 no.2
    • /
    • pp.45-50
    • /
    • 2006
  • In order to generate a photo-realistic synthesized image, we should reconstruct light environment by 3D analysis of scene. This paper presents a novel method for identifying the positions and characteristics of the lights-the global and local lights-in the real image, which are used to illuminate the synthetic objects. First, we generate High Dynamic Range(HDR) radiance map from omni-directional images taken by a digital camera with a fisheye lens. Then, the positions of the camera and light sources in the scene are identified automatically from the correspondences between images without a priori camera calibration. Types of the light sources are classified according to whether they illuminate the whole scene, and then we reconstruct 3D illumination environment. Experimental results showed that the proposed method with distributed ray tracing makes it possible to achieve photo-realistic image synthesis. It is expected that animators and lighting experts for the film and animation industry would benefit highly from it.

  • PDF

Three-dimensional Geometrical Scanning System Using Two Line Lasers (2-라인 레이저를 사용한 3차원 형상 복원기술 개발)

  • Heo, Sang-Hu;Lee, Chung Ghiu
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.5
    • /
    • pp.165-173
    • /
    • 2016
  • In this paper, we propose a three-dimensional (3D) scanning system based on two line lasers. This system uses two line lasers with different wavelengths as light sources. 532-nm and 630-nm line lasers can compensate for missing scan data generated by geometrical occlusion. It also can classify two laser planes by using the red and green channels. For automatic registration of scanning data, we control a stepping motor and divide the motor's rotational degree of freedom into micro-steps. To this end, we design a control printed circuit board for the laser and stepping motor, and use an image processing board. To compute a 3D point cloud, we obtain 200 and 400 images with laser lines and segment lines on the images at different degrees of rotation. The segmented lines are thinned for one-to-one matching of an image pixel with a 3D point.

Evaluation of SharpIR Reconstruction Method in PET/CT (PET/CT 검사에서 SharpIR 재구성 방법의 평가)

  • Kim, Jung-Yul;Kang, Chun-Koo;Park, Hoon-Hee;Lim, Han-Sang;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.1
    • /
    • pp.12-16
    • /
    • 2012
  • Purpose : In conventional PET image reconstruction, iterative reconstruction methods such as OSEM (Ordered Subsets Expectation Maximization) have now generally replaced traditional analytic methods such as filtered back-projection. This includes improvements in components of the system model geometry, fully 3D scatter and low noise randoms estimates. SharpIR algorithm is to improve PET image contrast to noise by incorporating information about the PET detector response into the 3D iterative reconstruction algorithm. The aim of this study is evaluation of SharpIR reconstruction method in PET/CT. Materials and Methods: For the measurement of detector response for the spatial resolution, a capillary tube was filled with FDG and scanned at varying distances from the iso-center (5, 10, 15, 20 cm). To measure image quality for contrast recovery, the NEMA IEC body phantom (Data Spectrum Corporation, Hillsborough, NC) with diameters of 1, 13, 17 and 22 for simulating hot and 28 and 37 mm for simulating cold lesions. A solution of 5.4 kBq/mL of $^{18}F$-FDG in water was used as a radioactive background obtaining a lesion of background ratio of 4.0. Images were reconstructed with VUE point HD and VUE point HD using SharpIR reconstruction algorithm. For the clinical evaluation, a whole body FDG scan acquired and to demonstrate contrast recovery, ROIs were drawn on a metabolic hot spot and also on a uniform region of the liver. Images were reconstructed with function of varying iteration number (1~10). Results: The result of increases axial distance from iso-center, full width at half maximum (FWHM) is also increasing in VUE point HD reconstruction image. Even showed an increasing distances constant FWHM. VUE point HD with SharpIR than VUE point HD showed improves contrast recovery in phantom and clinical study. Conclusion: By incorporating more information about the detector system response, the SharpIR algorithm improves the accuracy of underlying model used in VUE point HD. SharpIR algorithm improve spatial resolution for a line source in air, and improves contrast recovery at equivalent noise levels in phantoms and clinical studies. Therefore, SharpIR algorithm can be applied as through a longitudinal study will be useful in clinical.

  • PDF