• Title/Summary/Keyword: 3D image reconstruction

Search Result 591, Processing Time 0.026 seconds

High Spatial Resolution Satellite Image Simulation Based on 3D Data and Existing Images

  • La, Phu Hien;Jeon, Min Cheol;Eo, Yang Dam;Nguyen, Quang Minh;Lee, Mi Hee;Pyeon, Mu Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.2
    • /
    • pp.121-132
    • /
    • 2016
  • This study proposes an approach for simulating high spatial resolution satellite images acquired under arbitrary sun-sensor geometry using existing images and 3D (three-dimensional) data. First, satellite images, having significant differences in spectral regions compared with those in the simulated image were transformed to the same spectral regions as those in simulated image by using the UPDM (Universal Pattern Decomposition Method). Simultaneously, shadows cast by buildings or high features under the new sun position were modeled. Then, pixels that changed from shadow into non-shadow areas and vice versa were simulated on the basis of existing images. Finally, buildings that were viewed under the new sensor position were modeled on the basis of open library-based 3D reconstruction program. An experiment was conducted to simulate WV-3 (WorldView-3) images acquired under two different sun-sensor geometries based on a Pleiades 1A image, an additional WV-3 image, a Landsat image, and 3D building models. The results show that the shapes of the buildings were modeled effectively, although some problems were noted in the simulation of pixels changing from shadows cast by buildings into non-shadow. Additionally, the mean reflectance of the simulated image was quite similar to that of actual images in vegetation and water areas. However, significant gaps between the mean reflectance of simulated and actual images in soil and road areas were noted, which could be attributed to differences in the moisture content.

Resolution in Optical Scanning Holography (광스캔닝 훌로그래피의 해상도)

  • Doh, Kyu Bong
    • Journal of Advanced Navigation Technology
    • /
    • v.2 no.2
    • /
    • pp.126-131
    • /
    • 1998
  • In optical scanning holography, 3-D holographic information of an object is generated by 2-D active optical scanning. The optical scanning beam can be a time-dependent Gaussian apodized Fresnel zone plate. In this technique, the holographic information manifests itself as an electrical signal which can be sent to an electron-beam-addressed spatial light modulator for coherent image reconstruction. This technique can be applied to 3-D optical remote sensing especially for identifying flying objects. In this paper, we first briefly review optical scanning holography and analyze the resolution achievable with the system. We then present mathematical expression of real and virtual image which are responsible for holographic image reconstruction by using Gaussian beam profile.

  • PDF

Interactive prostate shape reconstruction from 3D TRUS images

  • Furuhata, Tomotake;Song, Inho;Zhang, Hong;Rabin, Yoed;Shimada, Kenji
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.4
    • /
    • pp.272-288
    • /
    • 2014
  • This paper presents a two-step, semi-automated method for reconstructing a three-dimensional (3D) shape of the prostate from a 3D transrectal ultrasound (TRUS) image. While the method has been developed for prostate ultrasound imaging, it can potentially be applicable to any other organ of the body and other imaging modalities. The proposed method takes as input a 3D TRUS image and generates a watertight 3D surface model of the prostate. In the first step, the system lets the user visualize and navigate through the input volumetric image by displaying cross sectional views oriented in arbitrary directions. The user then draws partial/full contours on selected cross sectional views. In the second step, the method automatically generates a watertight 3D surface of the prostate by fitting a deformable spherical template to the set of user-specified contours. Since the method allows the user to select the best cross-sectional directions and draw only clearly recognizable partial or full contours, the user can avoid time-consuming and inaccurate guesswork on where prostate contours are located. By avoiding the usage of noisy, incomprehensible portions of the TRUS image, the proposed method yields more accurate prostate shapes than conventional methods that demand complete cross-sectional contours selected manually, or automatically using an image processing tool. Our experiments confirmed that a 3D watertight surface of the prostate can be generated within five minutes even from a volumetric image with a high level of speckles and shadow noises.

Implementing 3-D Image Reconstruction Algorithms for Compton (컴프턴 카메라를 위한 3 차원 영상 재구성 알고리즘의 구현)

  • Lee, Mi-No;Lee, Soo-Jin
    • The Journal of Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.51-57
    • /
    • 2006
  • We propose efficient methods for implementing 3-D reconstruction algorithms for Compton camera. Since reconstructing Compton scattered data involves the surface integral over the cone associated with the measurement bin, it is crucial to develop a computationally efficient surface integration method. In this work we assume that a cone is made up of a series of ellipses (or circles) stacked up one o top of the other. In order to reduce computational burden for tracing ellipses formed by the intersection of a cone and an image plane, we construct a series of imaginary planes perpendicular to the cone axis so that each plane contains a circle, not an ellipse. In this case the surface integral can be performed by adding uniform samples along each circle. The experimental results demonstrate that our method using imaginary planes significantly improves computational efficiency while keeping reconstruction accuracy.

  • PDF

A Study on the 3D Reconstruction and Representation of CT Images (CT영상의 3차원 재구성 및 표현에 관한 연구)

  • 한영환;이응혁
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.2
    • /
    • pp.201-208
    • /
    • 1994
  • Many three-dimensional object modeling and display methods for computer graphics and computer vision have been developed. Recently, with the help of medical imaging devices such as computerized tomography, magnetic resonance image, etc., some of those object modeling and display methods have been widely used for capturing the shape, structure and other properties of real objects in many medical applications. In this paper, we propose the reconstruction and display method of the three-dimensional object from a series of the cross sectonal image. It is implemented by using the automatic threshold selection method and the contour following algorithm. The combination of curvature and distance, we select feature points. Those feature points are the candidates for the tiling method. As a results, it is proven that this proposed method is very effective and useful in the comprehension of the object's structure. Without the technician's responce, it can be automated.

  • PDF

A Study of the 3D-Reconstruction of indoor using Stereo Camera System (스테레오 카메라를 이용한 실내환경의 3차원 복원에 관한 연구)

  • Lee Dong-Hun;Um Dae-Youn;Kang Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.42-47
    • /
    • 2005
  • In this papcr, we address the 3D reconstruction of the indoor circumstance using what the data is extracted by a pall of image from Stereo Camera. Generally sucaking, there arc three methods to extract 3-Dimensional data using IR sensor, Laser sensor and Stereo camera sensor. The best is stereo camera sensor which can show a high performance at a reasonable price. We used 'Window Correlation Matching Method' to extract 3-Dimensional data in stereo image. We proposed new Method to reduce error data, said 'Histogram Weighted Hough Transform'. Owing to this mettled, we reduced error data in each stereo image. So reconstruction is well done. 3-Dimensional Reconstruction is accomplished by using the DirectX that is well known as 3D-Game development tool. We show that the stereo camera can be not only used to extract 3-dimensional data but also applied to reconstruct the 3-Dimensional circumstance. And we try to reduce the error data using various method.

Biomedical Applications of Stereoscopy for Three-Dimensional Surface Reconstruction in Scanning Electron Microscopes

  • Kim, Ki Woo
    • Applied Microscopy
    • /
    • v.46 no.2
    • /
    • pp.71-75
    • /
    • 2016
  • The scanning electron microscope (SEM) offers two-dimensional (2D) micrographs of three-dimensional (3D) objects due to its inherent operating mechanisms. To overcome this limitation, other devices have been used for quantitative morphological analysis. Many efforts have been made on the applications of software-based approaches to 3D reconstruction and measurements by SEM. Based on the acquisition of two stereo images, a multi-view technique consists of two parts: (i) geometric calibration and (ii) image matching. Quantitative morphological parameters such as height and depth could be nondestructively measured by SEM combined with special software programs. It is also possible to obtain conventional surface parameters such as roughness and volume of biomedical specimens through 3D SEM surface reconstruction. There is growing evidence that conventional 2D SEM without special electron detectors can be transformed to 3D SEM for quantitative measurements in biomedical research.

Reconstruction of Color-Volume Data for Three-Dimensional Human Anatomic Atlas (3차원 인체 해부도 작성을 위한 칼라 볼륨 데이터의 입체 영상 재구성)

  • 김보형;이철희
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.199-210
    • /
    • 1998
  • In this paper, we present a 3D reconstruction method of color volume data for a computerized human atlas. Binary volume rendering which takes the advantages of object-order ray traversal and run-length encoding visualizes 3D organs at an interactive speed in a general PC without the help of specific hardwares. This rendering method improves the rendering speed by simplifying the determination of the pixel value of an intermediate depth image and applying newly developed normal vector calculation method. Moreover, we describe the 3D boundary encoding that reduces the involved data considerably without the penalty of image quality. The interactive speed of the binary rendering and the storage efficiency of 3D boundary encoding will accelerate the development of the PC-based human atlas.

  • PDF

Error analysis of 3-D surface parameters from space encoding range imaging (공간 부호화 레인지 센서를 이용한 3차원 표면 파라미터의 에러분석에 관한 연구)

  • 정흥상;권인소;조태훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.375-378
    • /
    • 1997
  • This research deals with a problem of reconstructing 3D surface structures from their 2D projections, which is an important research topic in computer vision. In order to provide robust reconstruction algorithm, that is reliable even in the presence of uncertainty in the range images, we first present a detailed model and analysis of several error sources and their effects on measuring three-dimensional surface properties using the space encoded range imaging technique. Our approach has two key elements. The first is the error modeling for the space encoding range sensor and its propagation to the 3D surface reconstruction problem. The second key element in our approach is the algorithm for removing outliers in the range image. Such analyses, to our knowledge, have never attempted before. Experimental results show that our approach is significantly reliable.

  • PDF

Implementation of 3D Structure Reconstruction System Using Geometric Primitives (원시기하도형을 이용한 3차원구조 복원시스템의 구현)

  • 남현석;구본기;진성일
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.237-240
    • /
    • 2003
  • We implement a system for 3D structure reconstruction from multiple 2D images. It uses geometric primitives such as box, wedge, pyramid, etc, each having translation, rotation, and scale parameters. Primitives are marked on input images with GUI (Graphic User Interface). Lines made by projection of primitives onto an image correspond to marked line segments of the image. Error function is defined by disparity between them and is minimized by downhill simplex method. By assigning relationship between models, the number of parameters to solve can be decreased and the resultant models become more accurate To share variables among other models also reduces computational complexity. Experiments using real images have shown that the proposed method successfully reconstructs 3D structure.

  • PDF