• Title/Summary/Keyword: 3D image model

Search Result 1,052, Processing Time 0.027 seconds

Spatial reproducibility of complex fractionated atrial electrogram depending on the direction and configuration of bipolar electrodes: an in-silico modeling study

  • Song, Jun-Seop;Lee, Young-Seon;Hwang, Minki;Lee, Jung-Kee;Li, Changyong;Joung, Boyoung;Lee, Moon-Hyoung;Shim, Eun Bo;Pak, Hui-Nam
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.5
    • /
    • pp.507-514
    • /
    • 2016
  • Although 3D-complex fractionated atrial electrogram (CFAE) mapping is useful in radiofrequency catheter ablation for persistent atrial fibrillation (AF), the directions and configuration of the bipolar electrodes may affect the electrogram. This study aimed to compare the spatial reproducibility of CFAE by changing the catheter orientations and electrode distance in an in -silico left atrium (LA). We conducted this study by importing the heart CT image of a patient with AF into a 3D-homogeneous human LA model. Electrogram morphology, CFAE-cycle lengths (CLs) were compared for 16 different orientations of a virtual bipolar conventional catheter (conv-cath: size 3.5 mm, inter-electrode distance 4.75 mm). Additionally, the spatial correlations of CFAE-CLs and the percentage of consistent sites with CFAE-CL<120 ms were analyzed. The results from the conv-cath were compared with that obtained using a mini catheter (mini-cath: size 1 mm, inter-electrode distance 2.5 mm). Depending on the catheter orientation, the electrogram morphology and CFAE-CLs varied (conv-cath: $11.5{\pm}0.7%$ variation, mini-cath: $7.1{\pm}1.2%$ variation), however the mini-cath produced less variation of CFAE-CL than conv-cath (p<0.001). There were moderate spatial correlations among CFAE-CL measured at 16 orientations (conv-cath: $r=0.3055{\pm}0.2194$ vs. mini-cath: $0.6074{\pm}0.0733$, p<0.001). Additionally, the ratio of consistent CFAE sites was higher for mini catheter than conventional one ($38.3{\pm}4.6%$ vs. $22.3{\pm}1.4%$, p<0.05). Electrograms and CFAE distribution are affected by catheter orientation and electrode configuration in the in-silico LA model. However, there was moderate spatial consistency of CFAE areas, and narrowly spaced bipolar catheters were less influenced by catheter direction than conventional catheters.

DEVELOPMENT OF AN AMPHIBIOUS ROBOT FOR VISUAL INSPECTION OF APR1400 NPP IRWST STRAINER ASSEMBLY

  • Jang, You Hyun;Kim, Jong Seog
    • Nuclear Engineering and Technology
    • /
    • v.46 no.3
    • /
    • pp.439-446
    • /
    • 2014
  • An amphibious inspection robot system (hereafter AIROS) is being developed to visually inspect the in-containment refueling storage water tank (hereafter IRWST) strainer in APR1400 instead of a human diver. Four IRWST strainers are located in the IRWST, which is filled with boric acid water. Each strainer has 108 sub-assembly strainer fin modules that should be inspected with the VT-3 method according to Reg. guide 1.82 and the operation manual. AIROS has 6 thrusters for submarine voyage and 4 legs for walking on the top of the strainer. An inverse kinematic algorithm was implemented in the robot controller for exact walking on the top of the IRWST strainer. The IRWST strainer has several top cross braces that are extruded on the top of the strainer, which can be obstacles of walking on the strainer, to maintain the frame of the strainer. Therefore, a robot leg should arrive at the position beside the top cross brace. For this reason, we used an image processing technique to find the top cross brace in the sole camera image. The sole camera image is processed to find the existence of the top cross brace using the cross edge detection algorithm in real time. A 5-DOF robot arm that has multiple camera modules for simultaneous inspection of both sides can penetrate narrow gaps. For intuitive presentation of inspection results and for management of inspection data, inspection images are stored in the control PC with camera angles and positions to synthesize and merge the images. The synthesized images are then mapped in a 3D CAD model of the IRWST strainer with the location information. An IRWST strainer mock-up was fabricated to teach the robot arm scanning and gaiting. It is important to arrive at the designated position for inserting the robot arm into all of the gaps. Exact position control without anchor under the water is not easy. Therefore, we designed the multi leg robot for the role of anchoring and positioning. Quadruped robot design of installing sole cameras was a new approach for the exact and stable position control on the IRWST strainer, unlike a traditional robot for underwater facility inspection. The developed robot will be practically used to enhance the efficiency and reliability of the inspection of nuclear power plant components.

Human Activity Recognition Using Spatiotemporal 3-D Body Joint Features with Hidden Markov Models

  • Uddin, Md. Zia;Kim, Jaehyoun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2767-2780
    • /
    • 2016
  • Video-based human-activity recognition has become increasingly popular due to the prominent corresponding applications in a variety of fields such as computer vision, image processing, smart-home healthcare, and human-computer interactions. The essential goals of a video-based activity-recognition system include the provision of behavior-based information to enable functionality that proactively assists a person with his/her tasks. The target of this work is the development of a novel approach for human-activity recognition, whereby human-body-joint features that are extracted from depth videos are used. From silhouette images taken at every depth, the direction and magnitude features are first obtained from each connected body-joint pair so that they can be augmented later with motion direction, as well as with the magnitude features of each joint in the next frame. A generalized discriminant analysis (GDA) is applied to make the spatiotemporal features more robust, followed by the feeding of the time-sequence features into a Hidden Markov Model (HMM) for the training of each activity. Lastly, all of the trained-activity HMMs are used for depth-video activity recognition.

A Novel Approach to Mugshot Based Arbitrary View Face Recognition

  • Zeng, Dan;Long, Shuqin;Li, Jing;Zhao, Qijun
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.239-244
    • /
    • 2016
  • Mugshot face images, routinely collected by police, usually contain both frontal and profile views. Existing automated face recognition methods exploited mugshot databases by enlarging the gallery with synthetic multi-view face images generated from the mugshot face images. This paper, instead, proposes to match the query arbitrary view face image directly to the enrolled frontal and profile face images. During matching, the 3D face shape model reconstructed from the mugshot face images is used to establish corresponding semantic parts between query and gallery face images, based on which comparison is done. The final recognition result is obtained by fusing the matching results with frontal and profile face images. Compared with previous methods, the proposed method better utilizes mugshot databases without using synthetic face images that may have artifacts. Its effectiveness has been demonstrated on the Color FERET and CMU PIE databases.

Optical and Mechanical Characteristics of NF System and NF Gap Control (근접장 광학계의 광학적 및 기계적 특성 분석과 근접장 간격제어)

  • Oh, Hyeong-Ryeol;Lee, Jun-Hee;Gweon, Dae-Gab;Kim, Soo-Kyung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1528-1532
    • /
    • 2000
  • The conventional optics and near field optics are compared numerically in the view points of the spot size and propagation characteristics. The decaying characteristics of near field light require the optics to access the object within several tens of nanometers. Therefore the gap control is one of the main issues in the near field optics area. In this paper the gap control is done by using the shear force of the NF(Near Field) probe and the characteristics are examined. The probe is modeled as a 2'nd order mass-spring-damper system driven by a harmonic force. The primary cause of the decrease in vibration amplitude is due to the damping force - shear force - between the surface and the probe. Using the model, damping constant and resonance frequency of the probe is calculated as a function of probe-sample distance. Detecting the amplitude and phase shift of the NF probe attached to the high Q-factor piezoelectric tuning fork, we can control the position of the NF probe about 0 to 50nm above the sample. The feedback signal to regulate the probe-sample distance can be used independently for surface topography imaging. 3-D view of the shear force image of a testing sample with the period of $1{\mu}m$ will be shown.

  • PDF

Analysis of Face Direction and Hand Gestures for Recognition of Human Motion (인간의 행동 인식을 위한 얼굴 방향과 손 동작 해석)

  • Kim, Seong-Eun;Jo, Gang-Hyeon;Jeon, Hui-Seong;Choe, Won-Ho;Park, Gyeong-Seop
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.4
    • /
    • pp.309-318
    • /
    • 2001
  • In this paper, we describe methods that analyze a human gesture. A human interface(HI) system for analyzing gesture extracts the head and hand regions after taking image sequence of and operators continuous behavior using CCD cameras. As gestures are accomplished with operators head and hands motion, we extract the head and hand regions to analyze gestures and calculate geometrical information of extracted skin regions. The analysis of head motion is possible by obtaining the face direction. We assume that head is ellipsoid with 3D coordinates to locate the face features likes eyes, nose and mouth on its surface. If was know the center of feature points, the angle of the center in the ellipsoid is the direction of the face. The hand region obtained from preprocessing is able to include hands as well as arms. For extracting only the hand region from preprocessing, we should find the wrist line to divide the hand and arm regions. After distinguishing the hand region by the wrist line, we model the hand region as an ellipse for the analysis of hand data. Also, the finger part is represented as a long and narrow shape. We extract hand information such as size, position, and shape.

  • PDF

Pressure Analysis of Plantar Musculoskeletal Fascia while Walking using Finite Element Analyses (상세유한요소 모델링을 통한 보행중인 인체족부의 족저압 해석)

  • Jeon, Seong-Mo;Kim, Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.8
    • /
    • pp.913-920
    • /
    • 2012
  • An efficient 3D finite element walking model that considers the detailed shapes of muscles, ligaments, bones, skin, and soles was developed based on a real computed tomography (CT) scan image of a foot, and nonlinear contact analyses were performed to investigate pressure changes. The highest pressure occurs at the rear bottom of the foot when standing and walking. The pressure on the outsole with a curved foot bottom surface is lessened and distributed over a wider area than in the case of a flat outsole. The result shows that a shoe sole shape optimized for diabetes patients can relieve the foot pressure concentration and prevent further worsening of symptoms.

PERSONAL SPACE-BASED MODELING OF RELATIONSHIPS BETWEEN PEOPLE FOR NEW HUMAN-COMPUTER INTERACTION

  • Amaoka, Toshitaka;Laga, Hamid;Saito, Suguru;Nakajima, Masayuki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.746-750
    • /
    • 2009
  • In this paper we focus on the Personal Space (PS) as a nonverbal communication concept to build a new Human Computer Interaction. The analysis of people positions with respect to their PS gives an idea on the nature of their relationship. We propose to analyze and model the PS using Computer Vision (CV), and visualize it using Computer Graphics. For this purpose, we define the PS based on four parameters: distance between people, their face orientations, age, and gender. We automatically estimate the first two parameters from image sequences using CV technology, while the two other parameters are set manually. Finally, we calculate the two-dimensional relationship of multiple persons and visualize it as 3D contours in real-time. Our method can sense and visualize invisible and unconscious PS distributions and convey the spatial relationship of users by an intuitive visual representation. The results of this paper can be used to Human Computer Interaction in public spaces.

  • PDF

A Region Based Approach to Surface Segmentation using LIDAR Data and Images

  • Moon, Ji-Young;Lee, Im-Pyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_1
    • /
    • pp.575-583
    • /
    • 2007
  • Surface segmentation aims to represent the terrain as a set of bounded and analytically defined surface patches. Many previous segmentation methods have been developed to extract planar patches from LIDAR data for building extraction. However, most of them were not fully satisfactory for more general applications in terms of the degree of automation and the quality of the segmentation results. This is mainly caused from the limited information derived from LIDAR data. The purpose of this study is thus to develop an automatic method to perform surface segmentation by combining not only LIDAR data but also images. A region-based method is proposed to generate a set of planar patches by grouping LIDAR points. The grouping criteria are based on both the coordinates of the points and the corresponding intensity values computed from the images. This method has been applied to urban data and the segmentation results are compared with the reference data acquired by manual segmentation. 76% of the test area is correctly segmented. Under-segmentation is rarely founded but over-segmentation still exists. If the over-segmentation is mitigated by merging adjacent patches with similar properties as a post-process, the proposed segmentation method can be effectively utilized for a reliable intermediate process toward automatic extraction of 3D model of the real world.

A Ubiquitous Interface System for Mobile Robot Control in Indoor Environment (실내 환경에서의 이동로봇 제어를 위한 유비쿼터스 인터페이스 시스템)

  • Ahn Hyunsik;Song Jae-Sung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.1
    • /
    • pp.66-71
    • /
    • 2006
  • Recently, there are lots of concerning on ubiquitous environment of robots and URC (Ubiquitous Robotic Companion). In this paper, a practical ubiquitous interface system far controlling mobile robots in indoor environments was proposed. The interface system was designed as a manager-agent model including a PC manager, a mobile manager, and robot agents for being able to be accessed by any network. In the system, the PC manager has a 3D virtual environment and shows real images for a human-friendly interface, and share the computation load of the robot such as path planning and managing geographical information. It also contains Hybrid Format Manager(HFM) working for transforming the image, position, and control data and interchanging them between the robots and the managers. Mobile manager working in the minimized computing condition of handsets has a mobile interface environment displaying the real images and the position of the robot and being able to control the robots by pressing keys. Experimental results showed the proposed system was able to control robots rising wired and wireless LAN and mobile Internet.