• Title/Summary/Keyword: 3D finite elements

Search Result 389, Processing Time 0.027 seconds

A Study on the Shaped-Beam Antenna with High Gain Characteristic (고이득 특성을 갖는 성형 빔 안테나에 대한 연구)

  • Eom, Soon-Young;Yun, Je-Hoon;Jeon, Soon-Ick;Kim, Chang-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.1 s.116
    • /
    • pp.62-75
    • /
    • 2007
  • This paper describes a shaped-beam antenna for increasing the antenna gain of a radiating element. The proposed antenna structure is composed of an exciting element and a multi-layered disk array structure(MDAS). The stack micro-strip patch elements were used as the exciter for effectively radiating the electromagnetic power to the MDAS over the broadband, and finite metallic disk array elements - which give the role of a director for shaping the antenna beam with the high gain - were finitely and periodically layered onto it. The efficient power coupling between the exciter and the MDAS should be carried out in such a way that the proposed antenna has a high gain characteristic. The design parameters of the exciter and the MDAS should be optimized together to meet the required specifications to meet the required specifications. In this study, a shaped-beam antenna with high gain was optimally designed under the operating conditions with a linear polarization and the frequency band of $9.6{\sim}10.4\;GHz$. Two methods constructed using thin dielectric film and dielectric foam materials respectively were also proposed in order to implement the MBAS of the antenna. In particular, through the computer simulation process, the electrical performance variations of the antenna with the MDAS realized by the thin dielectric film materials were shown according to the number of disk array elements in the stack layer. Two kinds of antenna breadboard with the MDAS realized with the thin dielectric film and dielectric foam materials were fabricated, but experimentation was conducted only on the antenna breadboard(Type 1) with the MDAS realized with the thin dielectric film materials according to the number of disk array elements in the stack layer in order to compare it with the electrical performance variations obtained during the simulation. The measured antenna gain performance was found to be in good agreement with the simulated one, and showed the periodicity of the antenna gain variations according to the stack layer number of the disk array elements. The electrical performance of the Type 1 antenna was measured at the center frequency of 10 GHz. As the disk away elements became the ten stacks, a maximum antenna gain of 15.65 dBi was obtained, and the measured return loss was not less than 11.4 dB within the operating band. Therefore, a 5 dB gain improvement of the Type 1 antenna can be obtained by the MDAS that is excited by the stack microstrip patch elements. As the disk array elements became the twelve stacks, the antenna gain of the Type 1 was measured to be 1.35 dB more than the antenna gain of the Type 2 by the outer dielectric ring effect, and the 3 dB beam widths measured from the two antenna breadboards were about $28^{\circ}$ and $36^{\circ}$ respectively.

Three-Dimensional Structural Analysis System for Nuclear Containment Building (원자로 격납건물의 3차원 구조해석시스템)

  • Kim, Sun-Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.2
    • /
    • pp.235-243
    • /
    • 2010
  • Three-dimensional structural analysis system for nuclear containment building is presented in this paper. This system includes high-performance plate/shell elements as finite element library. It also adopts numerical modeling technique for unbonded tendon as well as bonded tendon in prestressed concrete structures. This system is constructed by connecting several in-house program to a commercial program DIANA, and then is capable of performing nonlinear analysis for ultimate pressure capacity of nuclear containment building. Finally, three-dimensional structural analysis of CANDU-type containment building is carried out in order to test the reliability of this system. These numerical results are compared with reference values, which obtained from axisymmetric structural analysis.

Numerical modelling of stress and deflection behaviour for welded steel beam-column

  • Soy, Ugur
    • Steel and Composite Structures
    • /
    • v.12 no.3
    • /
    • pp.249-260
    • /
    • 2012
  • In this study, stress and deflection behaviours of T-type welding joint applied to HE200M steel beam and column were investigated in finite element method (FEM) under different distributed loads. In the 3D-FEM modelling, glue option was used to contact between steel materials and weld nuggets. Geometrical model was designed as 3-dimensional solid in ANSYS software program. After that, homogeneous, linear and isotropic properties were used to design to materials of model. Solid-92 having 3-dimensional, 4 faced and 10-noded was selected as element type. In consequence of mesh operation, elements of 13285 and nodes of 28086 were occurred. Load distribution was applied to top surface of steel beam to determine behaviours of stress and deflection. As a result of FEM analysis applied with the loads of 55,000 N, 110,000 N and 220,000 N, maximum values were obtained as 116 N/$mm^2$, 232 N/$mm^2$ and 465 N/$mm^2$ for stress and obtainedas 1,083 mm, 2,166 mm and 4.332 mm for deflection, respectively. When modelling results and classical calculation values were compared, it was obtained difference of 10 % for stress values and 2.5% for deflection values.

Vibration Analysis of Laminated Composite Corrugated Plates (적층 복합재료 주름판의 진동해석)

  • Park, Kyung-Jo;Kim, Young-Wann
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.347-352
    • /
    • 2016
  • This work presents the free vibration characteristics of laminated composite corrugated rectangular plates using the analytical method. Because it is very difficult to determine its mechanical behavior of 3-dimensional corrugated structures analytically, the equivalent homogenization model is adapted to investigate the overall mechanical behavior of corrugated structures. The corrugated element can be homogenized as an orthotropic material. Both the effective extensional and flexural stiffness of this homogenized equivalent orthotropic material are considered in the analysis. The present analytical results are validated by those obtained from 3D finite element analysis based on shell elements. The natural frequencies and global vibration mode shapes obtained from present analytical and finite element analysis are presented. Some numerical results are presented to check the effect of the geometric properties.

Evaluation of Dynamic Behavior for Pile-Supported Slab Track System by 3D Numerical Analysis (3차원 수치해석을 통한 궤도지지말뚝의 동적거동 평가)

  • Yoo, Mintaek;Back, Mincheol;Lee, Ilhwa;Lee, Jinsun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.5
    • /
    • pp.255-264
    • /
    • 2017
  • Dynamic numerical simulation of pile-supported slab track system embedded in a soft soil and embankment was performed. 3D model was formulated in a time domain to consider the non-linearity of soil by utilizing FLAC 3D, which is a finite difference method program. Soil non-linearity was simulated by adopting the hysteric damping model and liner elements, which could consider soil-pile interface. The long period seismic loads, Hachinohe type strong motions, were applied for estimating seismic respose of the system, Parametric study was carried out by changing subsoil layer profile, embankment height and seismic loading conditions. The most of horizontal permanent displacement was initiated by slope failure. Increase of the embedded height and thickness of the soft soil layer leads increase of member forces of PHC piles; bending moment, and axial force. Finally, basic guidelines for designing pile-supported slab track system under seismic loading are recommended based on the analysis results.

Finite Element Analysis of an Agricultural Tractor Cabin based on the OECD Standard(code 4) (OECD규정(제4항)에 기초한 농업용 트랙터 캐빈의 유한요소 해석)

  • 하창욱;김현진;구남서;권영두
    • Journal of Biosystems Engineering
    • /
    • v.28 no.4
    • /
    • pp.305-314
    • /
    • 2003
  • The ROPS of an agricultural tractor is designed to protect its driver when the tractor overturns. Although the current OECD tests to determine whether the ROPS meets the requirements of the OECD regulation are desirable, they need long time to test. We experimental time and effort by using CAE. We conducted a finite element analysis for the ROPS design of a Dae-Dong tractor cabin in an attempt to reduce the design and manufacturing time. This study shows the interpretative skill using MARC(v.2000) for designing ROPS and difference between the results of testing and FEA. Design process is generally divided into two phases: a concept and a detail design. The concept design uses simple analysis to predict structural behavior, whereas the detail design involves a finite element analysis performed by the results of the concept design. This study focused on the detail design and used Patran(v.2000r2) and MARC(v.2000) of the MSC software corporation. The model consisted of 4812 elements and 4582 nodes. Four tests. specified in the OECD standards, were performed: (1) longitudinal loading test (2) rear crushing test (3) side loading test (4), and front crushing test. Independent analyses were also performed for each test, along with a sequential analysis. When compared, the results of the independent and sequential analyses were found to be similar to the test results.

A Study on the Vibration Characteristics of Critical Speed for Rotor Shaft (회전샤프트의 위험속도에 관한 진동특성 연구)

  • Son, Choong-Yul;Lee, Kang-Su;Ryu, Young-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.9
    • /
    • pp.961-971
    • /
    • 2008
  • In the design of a rotor shaft, care should be taken to minimize vibration by taking into account the sources of vibration. In addition, the intensity critical speed, stability, and other related aspects of the system must be considered. especially when it is operated at a critical speed, it is important to address issues related to vibration, as an increase in the whirling response of the rotor shaft can cause damage to the shaft, destruction of the rotor parts, and detrimental abrasions on the bearings. In this thesis, the vibration characteristics of a rotor shaft are investigated through the use of the finite element method. Variations of the diameters and lengths were used to determine the effect of a rotor shaft using Beam No.188(3D linear strain beam) in ANSYS version 11.0 as a universal interpretation program for finite elements. Special care was taken to prevent excessive vibration, which can result from resonance at the initial stage, in the formulation of a dynamic design for a rotor shaft through calculations while changing the diameters and the lengths of the shaft. Moreover, the dynamic characteristics of the critical speed, total mass, D/L(diameter to length) ratio, and natural frequency were verified. Furthermore, the rotor shaft applied by bearing element was calculated and compared by using Combi No. 214(2-D spring-damper bearing).

Simple method for static and dynamic analyses of guyed towers

  • Meshmesha, H.;Sennah, K.;Kennedy, J.B.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.6
    • /
    • pp.635-649
    • /
    • 2006
  • The static and dynamic responses of guyed telecommunication towers can be determined by using two models, the space truss element model, and the equivalent beam-column element model. The equivalent beam-column analysis is based on the determination of the equivalent shear, torsion, and bending rigidities as well as the equivalent area of the guyed mast. In the literature, two methods are currently available to determine the equivalent properties of lattice structures, namely: the unit load method, and the energy approach. In this study, an equivalent beam-column analysis is introduced based on an equivalent thin plate approach for lattice structures. A finite-element modeling, using suitably modified ABAQUS software, is used to investigate the accuracy of utilizing the different proposed methods in determining the static and dynamic responses of a guyed tower of 364.5-meter high subjected to static and seismic loading conditions. The results from these analyses are compared to those obtained from a finite-element modeling of the actual structure using 3-D truss and beam elements. Good agreement is shown between the different proposed beam-column models, and the model of the actual structure. However, the proposed equivalent thin plate approach is simpler to apply than the other two approaches.

Finite Element Modeling for Static and Dynamic Analysis of Structures with Bolted Joints (볼트결합부를 포함한 구조물의 정적 및 동적 해석을 위한 유한요소 모델링)

  • Gwon, Yeong-Du;Gu, Nam-Seo;Kim, Seong-Yun;Jo, Min-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.667-676
    • /
    • 2002
  • Many studies on the finite element modeling for bolted joints have proceeded, but the structures with bolted joints are complicated in shape and it is difficult to find out the characteristics according to joint condition. Usually, experimental methods have been used for bolted joint analysis. A reliable and practical finite element modeling technique for structure with bolted joints is very important for engineers in industry. In this study, three kinds of model are presented; a detailed model, a practical model and a simple model. The detailed model is modeled by using 3-D solid element and gap element, and the practical model is modeled by using shell element (a portion of bolt head) and beam element (a portion of bolt body), the simple model is modeled by simplifying practical model without using gap elements. Among these models, the simple model has the least degree of freedom and show the effect of memory reduction of 59%, when compared with the detailed model.

Femoral Fracture load and damage localization pattern prediction based on a quasi-brittle law

  • Nakhli, Zahira;Ben Hatira, Fafa;Pithioux, Martine;Chabrand, Patrick;Saanouni, Khemais
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.191-201
    • /
    • 2019
  • Finite element analysis is one of the most used tools for studying femoral neck fracture. Nerveless, consensus concerning either the choice of material characteristics, damage law and /or geometric models (linear on nonlinear) remains unreached. In this work, we propose a numerical quasi-brittle damage model to describe the behavior of the proximal femur associated with two methods to evaluate the Young modulus. Eight proximal femur finite elements models were constructed from CT scan data (4 donors: 3 women; 1 man). The numerical computations showed a good agreement between the numerical curves (load - displacement) and the experimental ones. A very encouraging result is obtained when a comparison is made between the computed fracture loads and the experimental ones ($R^2=0.825$, Relative error =6.49%). All specific numerical computation provided very fair qualitative matches with the fracture patterns for the sideway fall simulation. Finally, the comparative study based on 32 simulations adopting linear and nonlinear meshing led to the conclusion that the quantitatively results are improved when a nonlinear mesh is used.