• 제목/요약/키워드: 3D facial dimensions

검색결과 15건 처리시간 0.026초

Development of Korean Head forms for Respirator Performance Testing

  • Seo, Hyekyung;Kim, Jennifer Ivy;Kim, Hyunwook
    • Safety and Health at Work
    • /
    • 제11권1호
    • /
    • pp.71-79
    • /
    • 2020
  • Background: Protection from yellow dust and particulate matter is ensured by the use of respirators among the Korean citizens and workers. However, the manikins used to test the performance of the same were manufactured considering western facial specifications owing to which they do not represent Korean facial characteristics. Methods: Analysis of the data from the 6th 3D anthropometric survey of Koreans (Size Korea; 2010-2013) of 4,583 people aged 7 to 69 years was performed to obtain their facial dimensions. We subsequently clustered 44 facial measurements using Design X software, followed by the creation of the cluster centroid. Results: Three 3D head forms were developed-small, medium, and large, and their images were stored in ".stl" format for 3D printing. The facial widths and lengths of the three head forms were 127.1 mm × 90.6 mm, 143.2 mm × 104.0 mm, and 149.1 mm × 120.2 mm, respectively. Conclusion: We developed manikin head forms according to the facial dimensions of the Korean population, which was essential in evaluating respiratory protective equipment. These head forms can be used to test the performance of respirators considering the facial dimensions of the Korean population.

Analysis of 3D Facial Shapes of Female Adult to Improve Face Mask Fit

  • Choi, Jin;Do, Wol Hee
    • 한국의류산업학회지
    • /
    • 제22권6호
    • /
    • pp.826-833
    • /
    • 2020
  • When it is necessary to wear masks for long periods, such as during the current COVID-19 pandemic, the essential function of masks to prevent contamination (or transmission to others) as well as comfortableness are important. For this study, we used three-dimensional (3D) facial measurements of adult women to compile basic face shape data for designing comfortable and effective masks. This study analyzed the 3D facial data of 127 subjects in their 20s to 30s of the 6th Size Korea. Factor analysis of the survey data produced seven factors that formed the composition of adult female faces. These factors combined to produce three facial types: square (long face and a large lower middle face), oval (smallest central and lower body in the middle), and triangle (short face with a small central and lower large nose). These types reflect that the facial types of adult women show the differences in the nose angle, nose length, bitragion-subnasal arc, bitragion-menton arc. Therefore, properly fitting masks for fine dust particle filtration require 3D customization of a mask's breathing apparatus to fit differently shaped central and lower face parts that interfere with mask fit.

어린이용 황사 및 미세먼지 마스크 개발 연구 (Developing Yellow Dust and Fine Particulate Masks for Children)

  • 김현욱;서혜경;명준표;윤종서;송윤근;김충범
    • 한국산업보건학회지
    • /
    • 제26권3호
    • /
    • pp.350-366
    • /
    • 2016
  • Objectives: No 3D anthropometric analyses have been conducted for Korean children's faces for the purpose of designing respiratory protective devices. The aim of this study was to develop masks against yellow dust and fine particulates, particularly for children in Korea. Methods: This study utilized a 3D scanning method to obtain 16 facial anthropometric data from children, ages of 5 to 13 years old. A total of 144 boys and girls were recruited from the kindergarten, elementary schools and middle schools in Seoul. With facial dimensions obtained, cluster analysis was performed to categorize them into similar facial groups. For each cluster, an optimal mask was designed and manufactured using a 3D printer. In addition, lung function data were obtained from 62 subjects and compared with those of normal adults. The pulmonary physiological results were subsequently used to suggest a test method for mask certification. Results: Facial shapes were classified into tree clusters: small, medium, and large. The face width and length for the first group were small with high nosal protrusion. The face width and length for the second group were the largest among the three clusters. The third group had the largest angle of nose root - gnathion(n-prn-gn). Age was the most significant variable in the facial dimensions. Children's pulmonary physiological capacity was about 60% of adults' capacity. The results of fit test using the prototype masks developed showed very good fits for children. Conclusions: For Korean children, three mask sizes will be sufficient and practical for providing protection against yellow dust and fine particulates. Anthropometric data obtained using digitalized 3D face analysis can be very effective for designing respiratory devices. 3D images can be accurate and easily measured for multiple dimensions, particularly for curved areas of the face. It is imperative to adopt different test methods for certifying respiratory protective devices for children, since their pulmonary physiological capacity is inferior compared with that of adults.

국내 시판 Facial Mask Sheet의 제품 분석 -치수 적합성을 중심으로- (Analysis of Facial Mask Sheet Products in Domestic Market -For Better Size Suitability-)

  • 문지현;전은경
    • 한국의류학회지
    • /
    • 제44권6호
    • /
    • pp.1163-1177
    • /
    • 2020
  • The purpose of this study is to figure out the information needed to improve the shape and size suitability of face-applied mask sheets. The study analyzed the shape of the mask sheet from the scanned images of 50 products of 37 domestic brands. In addition, each measurement of 42 mask sheets were compared and analyzed multilaterally with the 3D measurement dimensions of the faces of men and women in their 20s from the 6th SizeKorea data. Analysis on the shapes of mask sheets indicated that domestic commercial mask sheets are mainly made of single or dual sheets, with slits for enhancing fitness to the three-dimensional face. In the dimensional analysis of Korean men, women and mask sheets, most of the lengths of the mask sheets were significantly larger or smaller than the actual faces of men and women. The horizontal length and vertical length of the forehead above the eyes are significantly shorter, thereby requiring adjustments in the dimensions of this area. In order to improve the size suitability of the mask, it is necessary to adjust the dimensions of the problem area according to the research results as well as diversify the dimensions considering the target layer.

어린이 보건용 마스크의 인증기준 마련을 위한 3D 얼굴치수 및 호흡량 연구 (Analysis of 3D Facial dimensions and Pulmonary Capacity of Korean Children for Designing of Children's Dust Masks)

  • 서혜경;김지현;윤종서;신동훈;김현욱
    • 한국산업보건학회지
    • /
    • 제27권4호
    • /
    • pp.269-282
    • /
    • 2017
  • Objectives: Currently, masks against yellow dust and fine particulates are being certified with no consideration of facial dimensional variations among children and adults. The aims of this study were to develop masks against yellow dust and fine particulates for children in Korea and provide basic data to suggest new test methods for mask certification that consider the breathing capacity of children. Methods: A total of 730 study participants aged from six to 13 years old were recruited in the Seoul, Gyeonggi, and Incheon region. This study used a 3D scanning instrument to obtain 16 facial anthropometric data points. Literature reviews, a comparison of breathing capacity between adults and children, and analysis of children's pulmonary physiological data were conducted in order to suggest new test standards for certifying children's masks against yellow dust and fine particulates. In addition, types of children's masks, choice of wearing a mask or not, and reasons for not wearing masks were surveyed. Results: Based on a clustering analysis of participants' facial dimensions, facial shapes were classified into three groups: small, medium, and large. The sizes of children's masks were subtracted by using 3D sketch techniques(Large: $121.25mm{\times}89.46mm$, Medium: $111.92mm{\times}78.55mm$, Small: $102.13mm{\times}72.87mm$). In certifying children's mask, flow rates of $60{\ell}/m$ for the filtering efficiency test and $20{\ell}/m$ for the breathing resistance test were recommended, since children's pulmonary physiological capacity is about 60-70% of adults' pulmonary capacity. Conclusions: The results of this study suggest that three mask sizes for children would be sufficient and practical for providing protection against yellow dust and fine particulates. Revising current test methods for certifying respiratory protective devices for children is important, since children's pulmonary physiological capacity substantially differs from that of adults. Therefore, it is recommended that new test standards for certifying children's masks be promulgated in the near future.

Accuracy and precision of integumental linear dimensions in a three-dimensional facial imaging system

  • Kim, Soo-Hwan;Jung, Woo-Young;Seo, Yu-Jin;Kim, Kyung-A;Park, Ki-Ho;Park, Young-Guk
    • 대한치과교정학회지
    • /
    • 제45권3호
    • /
    • pp.105-112
    • /
    • 2015
  • Objective: A recently developed facial scanning method uses three-dimensional (3D) surface imaging with a light-emitting diode. Such scanning enables surface data to be captured in high-resolution color and at relatively fast speeds. The purpose of this study was to evaluate the accuracy and precision of 3D images obtained using the Morpheus 3D$^{(R)}$ scanner (Morpheus Co., Seoul, Korea). Methods: The sample comprised 30 subjects aged 24.34 years (mean $29.0{\pm}2.5$ years). To test the correlation between direct and 3D image measurements, 21 landmarks were labeled on the face of each subject. Sixteen direct measurements were obtained twice using digital calipers; the same measurements were then made on two sets of 3D facial images. The mean values of measurements obtained from both methods were compared. To investigate the precision, a comparison was made between two sets of measurements taken with each method. Results: When comparing the variables from both methods, five of the 16 possible anthropometric variables were found to be significantly different. However, in 12 of the 16 cases, the mean difference was under 1 mm. The average value of the differences for all variables was 0.75 mm. Precision was high in both methods, with error magnitudes under 0.5 mm. Conclusions: 3D scanning images have high levels of precision and fairly good congruence with traditional anthropometry methods, with mean differences of less than 1 mm. 3D surface imaging using the Morpheus 3D$^{(R)}$ scanner is therefore a clinically acceptable method of recording facial integumental data.

A three-dimensional photogrammetric analysis of the facial esthetics of the Miss Korea pageant contestants

  • Jang, Kab Soo;Bayome, Mohamed;Park, Jae Hyun;Park, Ki-Ho;Moon, Hong-Beom;Kook, Yoon-Ah
    • 대한치과교정학회지
    • /
    • 제47권2호
    • /
    • pp.87-99
    • /
    • 2017
  • Objective: The aims of this study were to measure and compare the facial dimensions of the Miss Korea pageant contestants and a selected group of women from the general population by using three-dimensional (3D) image analysis, as well as to compare various facial ratios to the golden ratio within each group. Methods: Three-dimensional images of 52 Miss Korea pageant contestants (MK group) and 41 young female adults selected from the general population (GP group) were acquired. Fifty-four variables and ratios were measured and calculated. Intergroup comparisons were performed using multivariate analysis of variance. Results: Compared to the GP group, the MK group showed greater total facial height and eye width, lesser lower-facial height, and lesser facial, lower-facial, and nasal widths. Moreover, compared to the GP group, the MK group had more protruded noses with greater nasolabial angle, greater vertical curvature of the foreheads, lesser horizontal curvature of the cheek, and lesser lower-lip-and-chin volume. Conclusions: The MK group had longer faces but smaller lower lips and chins than did the GP group. The golden ratio was not matching the current facial esthetic standards. These data might be beneficial for treatment planning of patients undergoing orthognathic and plastic surgeries.

모션 데이터에 Isomap을 사용한 3차원 아바타의 실시간 표정 제어 (Realtime Facial Expression Control of 3D Avatar by Isomap of Motion Data)

  • 김성호
    • 한국콘텐츠학회논문지
    • /
    • 제7권3호
    • /
    • pp.9-16
    • /
    • 2007
  • 본 논문은 Isomap 알고리즘을 사용하여 다량의 고차원 얼굴 모션 데이터를 2차원 평면에 분포시키는 방법론과, 사용자가 이 공간을 항해하면서 원하는 표정들을 선택함으로써 실시간적으로 얼굴 표정 제어가 가능한 사용자 인터페이스 기법에 대하여 기술한다. Isomap 알고리즘은 세 단계의 과정으로 처리된다. 첫째, 각 표정 데이터의 인접표정을 정의하고, 둘째, 각 표정들 사이의 다양체 거리를 계산하여 표정공간을 구성한다. 표정공간의 생성은 임의의 두 표정간의 최단거리(다양체 거리)의 결정으로 귀결되고, 이를 위해 플로이드 알고리즘을 이용한다. 셋째, 다차원 표정공간을 가시화하기 위해서 다차원 스케일링을 사용하며, 2차원 평면에 투영시킨다. 인접표정을 정의하기 위한 최소 인접거리는 피어슨의 상관계수를 이용한다. 3차원 아바타의 얼굴 표정 제어는 사용자 인터페이스를 사용하여 2차원 공간을 항해하면서 실시간으로 제어한다.

Mixed-reality simulation for orthognathic surgery

  • Fushima, Kenji;Kobayashi, Masaru
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제38권
    • /
    • pp.13.1-13.12
    • /
    • 2016
  • Background: Mandibular motion tracking system (ManMoS) has been developed for orthognathic surgery. This article aimed to introduce the ManMoS and to examine the accuracy of this system. Methods: Skeletal and dental models are reconstructed in a virtual space from the DICOM data of three-dimensional computed tomography (3D-CT) recording and the STL data of 3D scanning, respectively. The ManMoS uniquely integrates the virtual dento-skeletal model with the real motion of the dental cast mounted on the simulator, using the reference splint. Positional change of the dental cast is tracked by using the 3D motion tracking equipment and reflects on the jaw position of the virtual model in real time, generating the mixed-reality surgical simulation. ManMoS was applied for two clinical cases having a facial asymmetry. In order to assess the accuracy of the ManMoS, the positional change of the lower dental arch was compared between the virtual and real models. Results: With the measurement data of the real lower dental cast as a reference, measurement error for the whole simulation system was less than 0.32 mm. In ManMoS, the skeletal and dental asymmetries were adequately diagnosed in three dimensions. Jaw repositioning was simulated with priority given to the skeletal correction rather than the occlusal correction. In two cases, facial asymmetry was successfully improved while a normal occlusal relationship was reconstructed. Positional change measured in the virtual model did not differ significantly from that in the real model. Conclusions: It was suggested that the accuracy of the ManMoS was good enough for a clinical use. This surgical simulation system appears to meet clinical demands well and is an important facilitator of communication between orthodontists and surgeons.

투영 벡터와 표면 곡률을 이용한 3차원 얼굴 인식 (3D Face Recognition using Projection Vectors and Surface Curvatures)

  • 박녹;이영학;이태홍
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제33권1호
    • /
    • pp.130-137
    • /
    • 2006
  • 얼굴의 깊이 정보는 개개인의 특성을 잘 나타내며, 특히 표면 곡률은 곡선으로 이루어진 사람들의 얼굴 표면을 특정 짓는 아주 중요한 정보이다. 3차원 물체 인식에서 표면 형태 특성을 잘 나타내는 곡률 정보와 계산량을 줄일 수 있는 차원 감소의 그룹 분할 투영 벡터 방법을 이용한 3차원 얼굴 인식 방법을 제안한다. 얼굴의 표면 곡률을 구하여, 이로부터 최대 곡률 및 최소 곡률에 대한 그룹 분할 투영 벡터를 적용하여 인식 하였다. 인식 결과 최소 곡률에 의한 투영 벡터 방법이 가장 높은 인식률을 나타내었다.