• Title/Summary/Keyword: 3D displays

Search Result 274, Processing Time 0.029 seconds

Extravasation Injury of Contrast Media in the Neck and Thorax During MDCT Scanning with 3D Image Reformation Findings (CT검사에서 조영제의 혈관외유출에 의한 목 및 흉부 손상의 3차원 재구성 영상)

  • Kweon, Dae-Cheol;Jang, Keun-Jo;Yoo, Beong-Gyu;Lee, Jong-Seok
    • Journal of radiological science and technology
    • /
    • v.30 no.3
    • /
    • pp.281-287
    • /
    • 2007
  • Contrast media may cause tissue injury by extravasation during intravenous automated injection during CT examination. Here, we present a study in which contrast media extravasation was detected and localized in the neck and thorax by three-dimensional(3D) CT data reformation. The CT studies of the extavasation site were performed using a 3D software program with four different display techniques axial, multi planar reformation(MPR), maximum intensity projection(MIP), and volume rendering displays are currently available for reconstructing MDCT data. 3D image reconstructions provide accurate views of high-resolution imaging. This paper introduces extravasation with the MDCT and 3D reformation findings of contrast media extravasation in neck ant thorax. The followed injection of the external jugular vein into an existing intravenous catheter and a large volume of extravasation was demonstrated on by 3D MDCT.

  • PDF

Comparison of Stereoscopic Fusional Area between People with Good and Poor Stereo Acuity (입체 시력이 양호한 사람과 불량인 사람간의 입체시 융합 가능 영역 비교)

  • Kang, Hyungoo;Hong, Hyungki
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.21 no.1
    • /
    • pp.61-68
    • /
    • 2016
  • Purpose: This study investigated differences in stereoscopic fusional area between those with good and poor stereo acuity in viewing stereoscopic displays. Methods: Stereo acuity of 39 participants (18 males and 21 females, $23.6{\pm}3.15years$) was measured with the random dot stereo butterfly method. Participants with stereo-blindness were not included. Stereoscopic fusional area was measured using stereoscopic stimulus by varying the amount of horizontal disparity in a stereoscopic 3D TV. Participants were divided into two groups of good and poor stereo acuity. Criterion for good stereo acuity was determined as less than 60 arc seconds. Measurements arising from the participants were statistically analyzed. Results: 26 participants were measured to have good stereo acuity and 13 participants poor stereo acuity. In case of the stereoscopic stimulus farther than the fixation point, threshold of horizontal disparity for those with poor stereo acuity were measured to be smaller than the threshold for those with good stereo acuity, with a statistically significant difference. On the other hand, there was no statistically significant difference between the two groups, in case of the stereoscopic stimulus nearer to the fixation point. Conclusions: In viewing stereoscopic displays, the boundary of stereoscopic fusional area for the poor stereo acuity group was smaller than the boundary of good stereo acuity group only for the range behind the display. Hence, in viewing stereoscopic displays, participants with poor stereo acuity would have more difficulty perceiving the fused image at farther distances compared to participants with good stereo acuity.

Properties of ZrO2 Gas Barrier Film using Facing Target Sputtering System with Low Temperature Deposition Process for Flexible Displays (플렉서블 디스플레이용 저온공정을 갖는 대향 타겟식 스퍼터링 장치를 이용한 ZrO2 가스 차단막의 특성)

  • Kim, Ji-Hwan;Cho, Do-Hyun;Sohn, Sun-Young;Kim, Hwa-Min;Kim, Jong-Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.5
    • /
    • pp.425-430
    • /
    • 2009
  • $ZrO_2$ film was deposited by facing target sputtering (FTS) system on polyethylene naphthalate (PEN) substrate as a gas barrier layer for flexible organic light emitting devices (FOLEDs), In order to control the heat of the FTS system caused by the ion bombardment in the cathode compared with the conventional sputtering system, the process characteristics of the FTS apparatus are investigated under various sputtering conditions such as the distance between two targets ($d_{TT}$), the distance between the target and the substrate ($d_{TS}$), and the deposition time. The $ZrO_2$ film by the FTS system can reduce the damage on the films because the ion bombardment with high-energy particles like gamma-electrons, Moreover, the $ZrO_2$ film with optimized condition ($d_{TT}$=140 mm) as a function of the distance from center to edge showed a very uniform thickness below 5 % for a deposition time of 3 hours, which can improve the interface property between the anode and the plastics substrate for flexible displays, It is concluded that the $ZrO_2$ film prepared by the FTS system can be applied as a gas barrier layer or an interlayer between the anode and the plastic substrate with good properties of an uniform thickness and a low deposition-temperature.

An Implementation Method of Virtual Environment Physical Properties (가상물체의 물리적 속성 구현 방법)

  • Im, Chang-Hyuck;Lee, Min-Geun;Lee, Myeong-Won
    • Journal of the Korea Computer Graphics Society
    • /
    • v.13 no.1
    • /
    • pp.25-32
    • /
    • 2007
  • Computer graphics technology has advanced such that all objects can be represented within a computer display. However, because computer displays have a finite resolution, the variety of objects that can be realistically represented together in the same view is restricted by the difference in their relative size. In addition, objects cannot be rendered according to their physical properties in terms of real length units in current computer graphics technology. To solve these problems, we have defined a method that allows objects to be described using real-world physical property units, such as metric units, in a computer graphics system, and developed a 3D browser based on X3D, which implements the concept of relative proportion properties.

  • PDF

Binocular Vision Corrective Spectacle Lenses Reduce Visual Fatigue in 3-D Television Viewing (양안시 교정안경의 3차원 텔레비전 시청 중 발생한 안정피로 감소)

  • Yoon, Jeong Ho;Kim, Jae-Do
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.3
    • /
    • pp.363-369
    • /
    • 2014
  • Purpose: Three-dimensional (3D) displays are very useful in many fields, but induce physical discomforts in some people. This study is to assess symptom type and severity of asthenopia with their habitual distance corrective spectacle (HDCS) and their binocular vision corrective spectacle lenses (BVCSL) in people who feel physical discomforts. Methods: 35 adult subjects (ages $32.2{\pm}4.4$ yrs) were pre-screened out of 98 individuals to have the highest symptom/asthenopia scores following 65 minutes of 3D television viewing with HDCS. These 35 individuals were then retested symptom/asthenopia scores during they watched 3D television for 65 minutes at a distance of 2.7 m with wearing BVCSL of horizontal, vertical or base down yoked prisms. A 4-point symptom-rating scale questionnaire (0=no symptom and 3=severe) was used to assess 11 symptoms (e.g., blur, diplopia, etc.) related to visual fatigue/visual discomfort. Distance and near lateral phoria were measured using Howell phoria card and vertical phoria were measured using Maddox rod. Symptoms induced by watching 3D TV were compared between wearing HDCS and BVCSL. Results: Asthenopia in watching 3D TV with wearing BVCS was significantly lower than wearing HDCS at 5, 25, 45, and 65 minutes (all p < 0.001, paired t-tests). In only refractive error power correction power group, all asthenopia was not significantly different between HDCS and BVCSL (all $p{\geq}0.05$, paired t-tests). In prism correction groups for binocular imbalance, symptoms of asthenopia, however, was significantly lower for when wearing BVCSL than when wearing HDCS (all p < 0.05). Conclusions: Correction of phoria/vergence-based binocular vision imbalance can reduce asthenopia during 3D television viewing. An individual with binocular vision imbalance need corrected/compensated glasses with appropriate prisms prior to prolonged viewing of 3D television displays to reduce asthenopia/visual fatigue.

Dispersive white-light interferometry using polarization of light for thin-film thickness profile measurement (편광분리 분산 분산형 백색광 간섭계를 이용한 박막두께형상측정법)

  • Ghim Y.S.;Kim S.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.565-568
    • /
    • 2005
  • We describe a new scheme of dispersive white-light interferometer that is capable of measuring the thickness profile of thin-film layers, for which not only the top surface height profile but also the film thickness of the target surface should be measured at the same time. The interferometer is found useful particularly for in-situ inspection of micro-engineered surfaces such as liquid crystal displays, which requires for high-speed implementation of 3-D surface metrology.

  • PDF

Application of GIS for the Visualization of Urban Demography in Kitakawachi Region, Japan

  • Shrestha, Sunil Babu;Taniguchi, Okinori
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.66-71
    • /
    • 2003
  • This study investigates the spatial patterns of distributed population in terms of population density, age structure, sex structure and family structure in Chou (smallest political city boundaries) of seven cities of Kitakawachi region. This displays the population dynamics of those cities from 1955 to 1995. It demonstrates how the populations of the cities are distributed with topography and with respect to the train stations. The demographic characteristics of the cities are visualized utilizing Arc View GIS capabilities with new visualizing technique in 3D environment based on data from Pasco Digital Map 2000.

  • PDF

Dispersive White-light Interferometry for in-situ Volumetric Thickness Profile of Thin-film Layers and a refractive index (분산형 백색광 간섭계를 이용한 미세 박막 구조물의 삼차원 두께 형상 및 굴절률의 실시간 측정)

  • Ghim Y.S.;Kim S.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.23-24
    • /
    • 2006
  • We present a dispersive scheme of white-light interferometry that enables not only to perform tomographical measurements of thin-film layers but also to measure a refractive index without mechanical depth scanning. The interferometry is found useful particularly for in-situ 3-D inspection of micro-engineered surfaces such as liquid crystal displays, semi-conductor and MEMS structure, which requires for high-speed implementation of 3-D surface metrology.

  • PDF

Holographic 3D Displays from SeeReal: Developments, Improvements, Progress

  • Leister, Norbert;Futterer, Gerald;Haussler, Ralf;Reichelt, Stephan;Sahm, Hagen;Schwerdtner, Alexander;Schwerdtner, Armin;Stolle, Hagen
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1179-1182
    • /
    • 2009
  • In 2007 SeeReal had demonstrated the first large realtime holographic 3D display based on tracked viewing windows. Subsequent work has lead to advanced concepts for overcoming limitations of the prototype. This paper describes the current state of SeeReal's developments and its progress in practical realization of these advanced solutions.

  • PDF

Multi-viewing zone screen for multiview 3-D displays

  • Son, Jung-Young;Smirnov, Vadim-V.;Chun, You-Seek
    • Journal of the Optical Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.62-65
    • /
    • 2000
  • A new type of multi-viewing zone screen for multiview 3-D display is described. The screen is made by stacking a Fresnel lens and a reflective prism array plate. The screen performs both focusing and beam dividing functions and directs very narrow light beams to three viewing zones for three spectators. The results of experimental testing of the screen have demonstrated that current technology of Fresnel lens and prism grooves on PMMA(Ploymethyl Methacrylate) allows manufacture of screen having a pixel size of about 1-2 mm. This size is reasonable enough for a screen with dimensions about 1m size. Optical qualities of Fresnel lenses and grooved prism arrays achieve an angular resolution for the screen of several angular minutes.