• Title/Summary/Keyword: 3D digital terrain model

Search Result 90, Processing Time 0.032 seconds

Performance Analysis of GLTF/GLB to Improve 3D Content Rendering Performance

  • Jae Myeong Choi;Ki-Hong Park
    • Journal of Platform Technology
    • /
    • v.11 no.4
    • /
    • pp.13-18
    • /
    • 2023
  • 3D content rendering is one of the important factors that give a sense of realism when creating content, and this process takes a lot of time. In this paper, we proposed a method to improve rendering performance by reducing the vast amount of 3D data in the web environment, and conducted a performance test using DEM and 3D model elevation data. As a result of the experiment, the digital elevation model showed faster performance than the Blender-based 3D modeling, but when the screen was moved using OrbitControl, the fps dropped momentarily. In the case of Terrain, if the range is limited to a speed that maintains 24 to 60 fps using frustum culling and LOD techniques, it is considered that a higher quality map can be produced than GeoTIFF.

  • PDF

Geographical and Equipment Modeling for 3D Excavation Simulation

  • Moon, Sungwoo;Jo, Hwani;Ku, Hyeonggyun;Choi, Sungil
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.242-244
    • /
    • 2017
  • Excavation for construction is implemented in natural geographical terrain using a variety of construction equipment. Therefore, 3D excavation simulation requires integration of geographical and equipment modeling. This paper proposes a technique that integrates geographical and equipment modeling for 3D simulations of construction excavation. The geographical model uses a digital map to show ground surface changes during excavation and the equipment model shows equipment movement and placement. This combination produced a state of the art 3D simulation environment that can be used for machine guidance. An equipment operator can use the 3D excavation simulation to help construction equipment operators with decisions during excavation work and consequently improve productivity.

  • PDF

3D Terrain Rendering using Contour Line Data (등고선 데이터를 이용한 3차원 지형 렌더링)

  • 김성수;김경호;이종훈;양영규
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.625-627
    • /
    • 2001
  • 기존의 종이지도를 수치지도 처리과정으로 얻어진 등고선(contour line) 데이터는 원격탐사(Remote Sensing)와 지리정보시스템(GIS)의 응용분야에서 주로 사용되어지는 데이터이다. 이러한 등고선은 해당 지역의 DTM(Digital Terrain Model) 데이터 생성을 위해 보간(interpolation)하여 생성하는 데 연구가 집중되어 왔다. 본 논문에서는 DEM(Digital levation Model)으로부터 얻어진 등고선 데이터를 이용하여 사용자에게 3차원으로 가시화 해 줄 수 있는 기법을 소개한다. 등고선 추출을 위한 방법으로는 기존의 소개되어진 Marching Square 알고리즘을 적용하였고, 지역적인 최고점(local minimum)과 최소점(maximum)을 구하기 위해 등고선을 열린 등고선(open contour)과 닫힌 등고선(closed contour)으로 분류하게 된다. 지역적 최고, 최소점을 찾기 위한 탐색공간을 줄이기 위해 닫힌 등고선만을 닫힌 등고만을 대상으로 등고선 트리를 생성하였으며, 생성된 트리의 리프노드에 대해서 최고, 최소점에 대한 근사(approximation)를 수행하게 된다. 이렇게 구해진 근사된 장점들과 등고선 데이털 입력으로 하여 제한된 딜로니 삼각분할(Constrained Delaunay Triangulation)을 수행함으로써, 3차원 지형을 재구성할 수 있다. 실험에서 간단한 그리드 샘플데이터와 USGS로 획득한 데이터를 이용하여 속도 측정을 하였다. 결과적으로 저장공간 측면에서 적은 량의 데이터를 가지면서 등고선을 표현할 수 있는 3차원 지형을 랜더링할 수가 있음을 알 수 있다.

  • PDF

Automatic Generation of Digital Elevation Model from 2D Terrain Map Using Graph-theoretic Algorithms (그래픽이론적 알고리즘들을 이용한 2차원 지형도로 부터 DEM 의 자동생성방법)

  • 구자영
    • Korean Journal of Remote Sensing
    • /
    • v.9 no.2
    • /
    • pp.21-34
    • /
    • 1993
  • Digitalized topographic information is necessary for many areas such as landscape analysis, civil engineering planning and design, and geographic information systems. It can also be used in flight simulator and automatic navigation of unmanned plane if it is stored in computer in relevant format. Topographic information is coded with various symbols including contour lines, and is analyzed by trained personnels. The information should be stored in computer for automatic analysis, but it requires a lot of time and manpower to enter the contours using manual input devices such as digitizing tablet. This paper deals with automatic extraction and reconstruction of 3D topographic information from 2D terrain map. Several algorithms were developed in this work including contour segment finding algorithm and contour segment linking algorithm. The algorithm were tested using real 2D terrain map.

Comparison of Accuracy and Characteristics of Digital Elevation Model by MMS and UAV (MMS와 UAV에 의한 수치표고모델의 정확도 및 특성 비교)

  • Park, Joon-Kyu;Um, Dae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.13-18
    • /
    • 2019
  • The DEM(Digital Elevation Model) is a three-dimensional spatial information that stores the height of the terrain as a numerical value. This means the elevation of the terrain not including the vegetation and the artifacts. The DEM is used in various fields, such as 3D visualization of the terrain, slope, and incense analysis, and calculation of the quantity of construction work. Recently, many studies related to the construction of 3D geospatial information have been conducted, but research related to DEM generation is insufficient. Therefore, in this study, a DEM was constructed using a MMS (Mobile Mapping System), UAV image, and UAV LiDAR (Light Detection And Ranging), and the accuracy evaluation of each result was performed. As a result, the accuracy of the DEM generated by MMS and UAV LiDAR was within ± 4.1cm, and the accuracy of the DEM using the UAV image was ± 8.5cm. The characteristics of MMS, UAV image, and UAV LiDAR are presented through a comparison of data processing and results. The DEM construction using MMS and UAV can be applied to various fields, such as an analysis and visualization of the terrain, collection of basic data for construction work, and service using spatial information. Moreover, the efficiency of the related work can be improved greatly.

Analysis of Forest Fire Damage Using LiDAR Data and SPOT-4 Satellite Images (LiDAR 자료 및 SPOT-4 위성영상을 활용한 산불피해 분석)

  • Song, Yeong Sun;Sohn, Hong Gyoo;Lee, Seok Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.527-534
    • /
    • 2006
  • This study estimated the forest damage of Kangwon-Do fire disaster occurred April 2005. For the estimation, the delineation of fire damaged area was performed using SPOT-4 satellite image and DSM (Digital surface model)/DTM (Digital Terrain Model) was generated by airborne and ground LiDAR data to calculate forests height. The damaged amount of money was calculated in forest area using stand volume formula, combining the canopy height from forest height model and digital stock map. The total forest damage amounted to 3.9 billion won.

Construction of 3D Geospatial Information for Development and Safety Management of Open-pit Mine (노천광산 개발 및 안전관리를 위한 3차원 지형정보 구축 및 정확도 분석)

  • Park, Joon Kyu;Jung, Kap Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.1
    • /
    • pp.43-48
    • /
    • 2020
  • Open pit mines for limestone mining require rapid development of technologies and efforts to prevent safety accidents due to rapid deterioration of the slope due to deforestation and rapid changes in the topography. Accurate three-dimensional spatial information on the terrain should be the basis for reducing environmental degradation and safe development of open pit mines. Therefore, this study constructed spatial information about open pit mine using UAV(Unmanned Aerial Vehicle) and analyzed its utility. images and 3D laser scan data were acquired using UAV, and digital surface model, digital elevation model and ortho image were generated through data processing. DSM(Digital Surface Model) and ortho image were constructed using image obtained from UAV. Trees were removed using 3D laser scan data and numerical elevation models were produced. As a result of the accuracy analysis compared with the check points, the accuracy of the digital surface model and the digital elevation model was about 11cm and 8cm, respectively. The use of three-dimensional geospatial information in the mineral resource development field will greatly contribute to effective mine management and prevention of safety accidents.

A Moving Synchronization Technique for Virtual Target Overlay (가상표적 전시를 위한 이동 동기화 기법)

  • Kim Gye-Young;Jang Seok-Woo
    • Journal of Internet Computing and Services
    • /
    • v.7 no.4
    • /
    • pp.45-55
    • /
    • 2006
  • This paper proposes a virtual target overlay technique for a realistic training simulation which projects a virtual target on ground-based CCD images according to an appointed scenario. This method creates a realistic 3D model for instructors by using high resolution GeoTIFF (Geographic Tag Image File Format) satellite images and DTED(Digital Terrain Elevation Data), and it extracts road areas from the given CCD images for both instructors and trainees, Since there is much difference in observation position, resolution, and scale between satellite Images and ground-based sensor images, feature-based matching faces difficulty, Hence, we propose a moving synchronization technique that projects the targets on sensor images according to the moving paths marked on 3D satellite images. Experimental results show the effectiveness of the proposed algorithm with satellite and sensor images of Daejoen.

  • PDF

Generation of Progressively Sampled DTM using Model Key Points Extracted from Contours in Digital Vector Maps (수치지도 등고선의 Model Key Point 추출과 Progressive Sampling에 의한 수치지형모델 생성)

  • Lee, Sun-Geun;Yom, Jae-Hong;Lim, Sae-Bom;Kim, Kye-Lim;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_2
    • /
    • pp.645-651
    • /
    • 2007
  • In general, contours in digital vector maps, which represent terrain characteristics and shape, are created by 3D digitizing the same height points using aerial photographs on the analytical or digital plotters with stereoscopic viewing. Hence, it requires lots of task, and subjective decision and experience of the operators. DTMs are generated indirectly by using contours since the national digital maps do not include digital terrain model (DTM) data. In this study, model key points which depict the important information about terrain characteristics were extracted from the contours. Further, determination of the efficient and flexible grid sizes were proposed to generate optimal DTM in terms of both quantitative and qualitative aspects. For this purpose, a progressive sampling technique was implemented, i.e., the smaller grid sizes are assigned for the mountainous areas where have large relief while the larger grid sizes are assigned for the relatively flat areas. In consequence, DTMs with multi-grid for difference areas could be generated instead of DTMs with a fixed grid size. The multi-grid DTMs reduce computations for data processing and provide fast display.

The Acquisition of Geo-spatial Information by Using Aerial Photo Images in Urban Area (항공사진 영상을 이용한 도심지역의 지형공간정보 취득)

  • 이현직;김정일;황창섭
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.1
    • /
    • pp.27-36
    • /
    • 2003
  • Generally, the latest acquisition method of geo-spatial informations in urban area is executed by generation of digital elevation model (DEM) and digital ortho image by digital photogrammetry method which is used large scale photo image. However, the biggest problem of this method is coarse accuracy of DEM which is automatically generated by digital photogrammetry workstation system. The coarse accuracy of DEM caused geo-spatial information in urban area to reduce of accuracy. Therefore, this study is purposed to increase of DEM accuracy which is applied to method terrain classification in urban area. As the results of this study, the proposed method of this study which is increased to accuracy of DEM by classification of terrain is better than accuracy of DEM which is automatically generated by digital photogrammetry workstaion system. And, the edge detection method which is proposed by this study is established to capability of 3D digital mapping in urban area.