• Title/Summary/Keyword: 3D coding

Search Result 558, Processing Time 0.032 seconds

Adaptive Block-based Depth-map Coding Method (적응적 블록기반 깊이정보 맵 부호화 방법)

  • Kim, Kyung-Yong;Park, Gwang-Hoon;Suh, Doug-Young
    • Journal of Broadcast Engineering
    • /
    • v.14 no.5
    • /
    • pp.601-615
    • /
    • 2009
  • This paper proposes an efficient depth-map coding method for generating virtual-view images in 3D-Video. Virtual-view images can be generated by the view-interpolation based on the depth-map of the image. A conventional video coding method such as H.264 has been used. However, a conventional video coding method does not consider the image characteristics of the depth-map. Therefore, this paper proposes an adaptive depth-map coding method that can select between the H.264/AVC coding scheme and the proposed gray-coded bit plane-based coding scheme in a unit of block. This improves the coding efficiency of the depth-map data. Simulation results show that the proposed method, in comparison with the H.264/AVC coding scheme, improves the average BD-rate savings by 7.43% and the average BD-PSNR gains by 0.5dB. It also improves the subjective picture quality of synthesized virtual-view images using decoded depth-maps.

Reusable HEVC Design in 3D-HEVC

  • Heo, Young Su;Bang, Gun;Park, Gwang Hoon
    • ETRI Journal
    • /
    • v.38 no.5
    • /
    • pp.818-828
    • /
    • 2016
  • This paper proposes a reusable design for the merging process used in three-dimensional High Efficiency Video Coding (3D-HEVC), which can significantly reduce the implementation complexity by eliminating duplicated module redundancies. The majority of inter-prediction coding tools used in 3D-HEVC are utilized through a merge mode, whose extended merging process is based on built-in integration to completely wrap around the HEVC merging process. Consequently, the implementation complexity is unavoidably very high. To facilitate easy market implementation, the design of a legacy codec should be reused in an extended codec if possible. The proposed 3D-HEVC merging process is divided into the base merging process of reusing HEVC modules and reprocessing process of refining the existing processes that have been newly introduced or modified for 3D-HEVC. To create a reusable design, the causal and mutual dependencies between the newly added modules for 3D-HEVC and the reused HEVC modules are eliminated, and the ineffective methods are simplified. In an application of the proposed reusable design, the duplicated reimplementation of HEVC modules, which account for 50.7% of the 3D-HEVC merging process, can be eliminated while maintaining the same coding efficiency. The proposed method has been adopted as a normative coding tool in the 3D-HEVC international standard.

Coding Technique using Depth Map in 3D Scalable Video Codec (확장된 스케일러블 비디오 코덱에서 깊이 영상 정보를 활용한 부호화 기법)

  • Lee, Jae-Yung;Lee, Min-Ho;Chae, Jin-Kee;Kim, Jae-Gon;Han, Jong-Ki
    • Journal of Broadcast Engineering
    • /
    • v.21 no.2
    • /
    • pp.237-251
    • /
    • 2016
  • The conventional 3D-HEVC uses the depth data of the other view instead of that of the current view because the texture data has to be encoded before the corresponding depth data of the current view has been encoded, where the depth data of the other view is used as the predicted depth for the current view. Whereas the conventional 3D-HEVC has no other candidate for the predicted depth information except for that of the other view, the scalable 3D-HEVC utilizes the depth data of the lower spatial layer whose view ID is equal to that of the current picture. The depth data of the lower spatial layer is up-scaled to the resolution of the current picture, and then the enlarged depth data is used as the predicted depth information. Because the quality of the enlarged depth is much higher than that of the depth of the other view, the proposed scheme increases the coding efficiency of the scalable 3D-HEVC codec. Computer simulation results show that the scalable 3D-HEVC is useful and the proposed scheme to use the enlarged depth data for the current picture provides the significant coding gain.

New Texture Prediction for Multi-view Video Coding

  • Park, Ji-Ho;Kim, Yong-Hwan;Choi, Byeong-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1508-1511
    • /
    • 2007
  • This paper introduces a new texture prediction for MVC( Multi-view Video Coding) which is currently being developed as an extension of the ITU-T Recommendation H.264 | ISO/IEC International Standard ISO/IEC 14496-10 AVC (Advanced Video Coding) [1]. The MVC's prcimary target is 3D video compression for 3D display system, thus, key technology compared to 2D video compression is reducing inter-view correlation. It is noticed, however, that the current JMVM [2] does not effectively eliminate inter-view correlation so that there is still a room to improve coding efficiency. The proposed method utilizes similarity of interview residual signal and can provide an additional coding gain. It is claimed that up to 0.2dB PSNR gain with 1.4% bit-rate saving is obtained for three multi-view test sequences.

  • PDF

Video based Point Cloud Compression with Versatile Video Coding (Versatile Video Coding을 활용한 Video based Point Cloud Compression 방법)

  • Gwon, Daeheyok;Han, Heeji;Choi, Haechul
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.497-499
    • /
    • 2020
  • 포인트 클라우드는 다수의 3D 포인터를 사용한 3D 데이터의 표현 방식 중 하나이며, 멀티미디어 획득 및 처리 기술의 발전에 따라 다양한 분야에서 주목하고 있는 기술이다. 특히 포인트 클라우드는 3D 데이터를 정밀하게 수집하고 표현할 수 있는 장점을 가진다. 하지만 포인트 클라우드는 방대한 양의 데이터를 가지고 있어 효율적인 압축이 필수적이다. 이에 따라 국제 표준화 단체인 Moving Picture Experts Group에서는 포인트 클라우드 데이터의 효율적인 압축을 위하여 Video based Point Cloud Compression(V-PCC)와 Geometry based Point Cloud Coding에 대한 표준을 제정하고 있다. 이 중 V-PCC는 기존 High Efficiency Video Coding(HEVC) 표준을 활용하여 포인트 클라우드를 압축하여 활용성이 높다는 장점이 있다. 본 논문에서는 V-PCC에 사용하는 HEVC 코덱을 2020년 7월 표준화 완료될 예정인 Versatile Video Coding으로 대체하여 V-PCC의 압축 성능을 더 개선할 수 있음을 보인다.

  • PDF

A New Scanning Method for Network-adaptive Scalable Streaming Video Coding (네트워크에 적응적인 스케일러블 스트리밍 비디오 코딩을 위한 새로운 스캔 방법)

  • Park, Gwang-Hoon;Cheong, Won-Sik
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.3
    • /
    • pp.318-327
    • /
    • 2002
  • This paper Introduces a new scanning method for network-adaptive scalable streaming video coding methodologies such as the MPEG-4 Fine Granular Scalable (FGS) Coding. Proposed scanning method can guarantee the subjectively improved picture quality of the region of the interest in the decoded video by managing the image information of that interested region to be encoded and transmitted most-preferentially, and also to be decoded most-preferentially. Proposed scanning method can lead the FGS coding method to achieve improved picture quality, in about 1dB ~ 3dB better, especially on the region of interest.

Fast 3D Mesh Compression Using Shared Vertex Analysis

  • Jang, Euee-Seon;Lee, Seung-Wook;Koo, Bon-Ki;Kim, Dai-Yong;Son, Kyoung-Soo
    • ETRI Journal
    • /
    • v.32 no.1
    • /
    • pp.163-165
    • /
    • 2010
  • A trend in 3D mesh compression is codec design with low computational complexity which preserves the input vertex and face order. However, this added information increases the complexity. We present a fast 3D mesh compression method that compresses the redundant shared vertex information between neighboring faces using simple first-order differential coding followed by fast entropy coding with a fixed length prefix. Our algorithm is feasible for low complexity designs and maintains the order, which is now part of the MPEG-4 scalable complexity 3D mesh compression standard. The proposed algorithm is 30 times faster than MPEG-4 3D mesh coding extension.

Depth-map coding using the block-based decision of the bitplane to be encoded (블록기반 부호화할 비트평면 결정을 이용한 깊이정보 맵 부호화)

  • Kim, Kyung-Yong;Park, Gwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.15 no.2
    • /
    • pp.232-235
    • /
    • 2010
  • This paper proposes an efficient depth-map coding method. The adaptive block-based depth-map coding method decides the number of bit planes to be encoded according to the quantization parameters to obtain the desired bit rates. So, the depth-map coding using the block-based decision of the bit-plane to be encoded proposes to free from the constraint of the quantization parameters. Simulation results show that the proposed method, in comparison with the adaptive block-based depth-map coding method, improves the average BD-rate savings by 3.5% and the average BD-PSNR gains by 0.25dB.

Multiple Description Coding of 3-D Data (3차원 데이터의 다중 부호화 기법)

  • Park, Sung-Bum;Kim, Chang-Su;Lee, Sang-Uk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9C
    • /
    • pp.840-848
    • /
    • 2007
  • A multiple description coding (MDC) scheme for 3-D Data is presented. First, a plane-based 3-D data is split into two descriptions, each of which has identical contribution in 3-D surface reconstruction. In order to maximize the visual quality of reconstructed 3-D data, then, plane parameters are modified according to channel error condition. Finally, these descriptions are compressed and transmitted over distinct channels. In decoder, if two descriptions are available, we reconstruct a high quality 3-D data. If only one description is transmitted, however, 3-D surface recovery scheme reduces artifacts on erroneous 3-D surface, yielding a smooth 3-D surface. Therefore, the proposed algorithm guarantees acceptable quality reconstruction of 3-D data even though one channel is totally lost.

Texture Image Rearrangement for Texture Coordinate Coding of Three-dimensional Mesh Models (삼차원 메쉬 모델의 텍스처 좌표 부호화를 위한 텍스처 영상의 재배열 방법)

  • Kim, Sung-Yeol;Ho, Yo-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.963-966
    • /
    • 2005
  • Previous works related to texture coordinate coding of the three-dimensional(3-D) mesh models employed the same predictor as the geometry coder. However, discontinuities in the texture coordinates cause unreasonable prediction. Especially, discontinuities become more serious for the 3-D mesh model with a non-atlas texture image. In this paper, we propose a new coding scheme to remove discontinuities in the texture coordinates by reallocating texture segments according to a coding order. Experiment results show that the proposed coding scheme outperforms the MPEG-4 3DMC standard in terms of compression efficiency. The proposed scheme not only overcome the discontinuity problem by regenerating a texture image, but also improve coding efficiency of texture coordinate compression.

  • PDF