
ETRI Journal, Volume 32, Number 1, February 2010 © 2010 Euee Seon Jang et al. 163

A trend in 3D mesh compression is codec design with low
computational complexity which preserves the input vertex and
face order. However, this added information increases the
complexity. We present a fast 3D mesh compression method
that compresses the redundant shared vertex information
between neighboring faces using simple first-order differential
coding followed by fast entropy coding with a fixed length
prefix. Our algorithm is feasible for low complexity designs
and maintains the order, which is now part of the MPEG-4
scalable complexity 3D mesh compression standard. The
proposed algorithm is 30 times faster than MPEG-4 3D mesh
coding extension.

Keywords: 3D mesh compression, prefix code, real-time
encoding and decoding.

I. Introduction

With the plethora of 3D mesh-based models in many
graphics applications such as games, the need for 3D mesh
compression for transmission and storage purposes is ever
increasing. Many proposed technologies, including the latest
MPEG-4 3D mesh coding (3DMC) standard, achieve good
compression efficiency [1], [2]. However, few of these tools
are being used in the graphics industry, perhaps because of the
complexity during the encoding and decoding processes in
most applications where the computational complexity should

Manuscript received Aug. 25, 2009; revised Oct. 21, 2009; accepted Nov. 19, 2009.
This work was supported by the Strategic Technology Development program of

MCST/MKE/KEIT, Rep. of Korea [2008-F-030-01, Development of Full 3D Reconstruction
Technology for Broadcasting Communication Fusion].

Euee Seon Jang (phone: +82 2 2220 1086, email: esjang@hanyang.ac.kr), Daiyong Kim
(corresponding author, email: dykim@dmlab.hanyang.ac.kr), and Kyoungsoo Son (email:
bonokensin@dmlab.hanyang.ac.kr) are with the Department of Electronics, Computer, and
Communication Engineering, Hanyang University, Seoul, Rep. of Korea.

Seoungwook Lee (email: tajinet@etri.re.kr) and Bonki Koo (email: bkkoo@etri.re.kr) are
with the Contents Research Division, ETRI, Daejeon, Rep. of Korea.

doi:10.4218/etrij.10.0209.0357

be minimized to support real-time rendering—one of the most
important requirements for interactive 3D graphics.

3D mesh compression has been extensively researched in
many studies with a focus on compression efficiency. The
compression of both static and dynamic meshes over time has
been investigated [3]. Peng and others provided a good survey
on various 3D mesh compression technologies [2]. However,
even the most efficient 3D mesh compression methods, such as
transformation, prediction, quantization, and entropy coding,
that are used to compress various attributes in a 3D mesh
model (connectivity, geometry, and other attributes) do not take
into account the order of faces and/or vertices in a given 3D
mesh representation, despite its importance for animation and
other interactive rendering processes.

In the MPEG-4 3DMC extension (3DMCe) [1], additional
fields were introduced to transmit the original ordering
information whenever needed. Considering the overhead
incurred by transmitting the ordering information, the potential
coding gain is lost, and the computational complexity of
decoding and reordering increases greatly [4].

In this letter, we propose a fast 3DMC method that preserves
the vertex/face ordering information with reasonable
compression efficiency but improved computational
complexity. The proposed method has the following features:
fast connectivity coding by exploiting shared vertex properties,
circular differential coding (CDC), and fast entropy coding
using binary shift coding (BSC) and exponential Golomb
coding (EGC) [5].

II. Proposed Codec

As shown in Fig. 1, the proposed codec consists of four
processes: quantization (for geometry and attributes), shared

Fast 3D Mesh Compression Using
Shared Vertex Analysis

 Euee Seon Jang, Seungwook Lee, Bonki Koo, Daiyong Kim, and Kyoungsoo Son

164 Euee Seon Jang et al. ETRI Journal, Volume 32, Number 1, February 2010

Fig. 1. Encoding diagram of the proposed method.

Entropy
coding

Circular
differential

coding

Quantizer

SVA

Mesh Attributes

Geometry

Connectivity

Bitstream

vertex analysis (SVA) (for connectivity), CDC, and entropy
coding. The quantization process is the same as that of
MPEG-4 3DMC. In the following subsections, we explain
SVA, CDC, and entropy coding in detail.

1. Connectivity Coding: SVA

As shown in Table 1, each face contains the list of vertices
that form the faces. A vertex may be used by several faces;
therefore, it is very likely that the vertices used in the previous
face will also be used in the current face. Through SVA, the
connectivity between the current face and the previously
encoded face is checked by counting the number of shared
vertices. If an input 3D mesh is triangular, the number of
shared vertices varies from zero to three. Therefore, we define
four different modes to represent vertices for the current face as
shown in Fig. 2. For a triangular face, the vertices in the
previous face may not be reused in the current face (mode 0),
reused by one vertex (mode 1), reused by two vertices (mode
2), or all reused (mode 3). Indices of new vertices in modes 0, 1,
and 2 are subject to differential encoding by computing the
difference in the vertex index (DVI), which is calculated by
comparing the current vertex index and the previous vertex
index. Depending on the number of unshared vertexes,
additional information may be sent. For example, the location
of the shared vertex (shared position) is necessary in mode 1,
while the location of the unshared vertex (unshared position) is
necessary in mode 2. The location field can be represented by
two bits. For modes 2 and 3, the 1-bit face direction flag is
included to indicate whether the order of the vertices in the
current face is the same as that of the previous face.

In Table 1, the encoding mode of the first face is mode 0
because it does not have any previous face. We assume that all
three vertex indices of the previous face are zeros; therefore, the
DVIs for the first face are the same as the original vertex indices.

In the decoding process, the original order of the vertex
index of a face may or may not be preserved. For example, a
face of the vertex indices (0, 1, 2) may be decoded as (2, 0, 1)
or (1, 2, 0). This is not a problem because the triangle is
represented by three vertices. A face of (0, 1, 2) and a face of

Table 1. Example of SVA and CDC (Md = 8).

Face vertex index Face
index 1st 2nd 3rd

Mode Position
Face

direction
DVI

1
DVI

2
DVI

3

1 0 1 2 0 - - 0 1 2

2 2 3 0 2 1 1 - 2 -

3 4 5 0 1 2 - 2 2 -

4 0 3 4 2 1 1 - -2 -

5 5 6 1 0 - - 5 3 -3

Fig. 2. SVA mode.

Mode 0

Mode 1

Mode 2

Mode 3

Mode type DVI 1 DVI 2 DVI 3

Mode type
Shared
position DVI 1 DVI 2

Mode type
Unshared
position

Face
direction DVI 1

Mode type
Face

direction

Current
face

(0, 2, 1), however, are different in that the normal vectors of the
two faces are in exactly the opposite directions. This is why we
transmit the face direction flag whenever needed.

2. Circular Differential Coding

A DVI value from SVA may range from –(Md –1) to (Md –1),
where Md is the total number of vertices. We can reduce the
differential error range by half by calculating the circular
differential as

c p

, if ;
2

, if ;
2 2

, if ,
2

d
d

d d

d
d

dvi vi vi

M
dvi M dvi

M M
dvi dvi dvi

M
dvi M dvi

= −

⎧ ⎢ ⎥− >⎪ ⎢ ⎥⎣ ⎦⎪
⎪ ⎢ ⎥ ⎢ ⎥⎪= − ≤ ≤⎨ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎪
⎪ ⎢ ⎥⎪ + < − ⎢ ⎥⎪ ⎣ ⎦⎩

where vic and vip represent the current and previous vertex
indices. For example, the first DVI of face 5 in Table 1 is
changed from 5 to –2. The decoding process of the CDC is
carried out as follows:

c p

c c

,

, if ;
, if 0 ;

, if 0.

d d

d

d

vi vi dvi

dvi M dvi M
vi vi dvi M

dvi M dvi

= +

− ≥⎧
⎪= ≤ <⎨
⎪ + <⎩

ETRI Journal, Volume 32, Number 1, February 2010 Euee Seon Jang et al. 165

3. Entropy Coding: BSC and EGC

The main idea of the BSC method, called the “Huffman shift,”
is to decide the bit length of the symbols. The size of a symbol in
a BSC representation is a multiple of the length of the bits. A
symbol in the BSC representation can be determined by a
modulus operation with each quotient and remainder pair as
shown in [5]. The probability density function of the CDC
output is an exponential-like function which has a zero-mean
and Md/2 as the maximum value. The fastest and best coding
algorithm for this distribution is EGC [6].

We employed BSC and EGC because they produce good
compression efficiency with very low computational complexity.
In our previous research, we found that application of BSC to
image and video coding is quite effective in that BSC is several
times faster than conventional variable length decoding or
arithmetic coding. Further details on BSC can be found in [7].

III. Experimental Results

We evaluated the proposed algorithm with two other methods:
the MPEG-4 3DMCe reference codec and the quantization-
based compact representation (QBCR), which represent the two
extreme points in compression efficiency and computational
complexity. MPEG-4 3DMCe is an anchor point to evaluate the
compression performance of the proposed method, and QBCR
is an anchor point to evaluate the computational complexity.
QBCR is the simplest design to build a low-complexity 3D
mesh compression as it only uses quantization. It is also a fast
design in that it requires only inverse quantization at the

Fig. 3. Average compression ratio.

3

5

7

9

11

3DMC SVA_BSC SVA_EGC QBCR

B
it

Fig. 4. Average encoding and decoding times of 4 methods.

0.001
3DMC SVA_BSC SVA_EGC QBCR

Ti
m

e
(s

)

Encoding

Decoding

0.01

0.1

1

decoder. Each field value (vertex or face) can go through the
conventional graphics pipeline with additional quantization,
which increases the complexity only negligibly.

For evaluation, we used the 729 3D mesh models that are
used in the MPEG-4 3DGC website [8]. We measured the
compression efficiency by averaging the compression
performance of the 729 models for each method as shown in
Fig. 3. From the figure, it is quite clear that the performance of
the proposed method is between that of 3DMCe and that of
QBCR. The proposed method is compared with 3DMCe and
QBCR in terms of computational complexity by measuring the
encoding and decoding times. In Fig. 4, it is quite apparent that
the proposed method and QBCR are much faster than 3DMCe.
In summary, the proposed methods were 35 times faster on
average than the 3DMCe encoder and decoder.

IV. Conclusion

In this letter, we presented a fast 3D mesh coding method
using a shared vertex analysis. The experimental results
showed that the proposed method achieved very low
computational complexity with a reasonable coding gain. The
major advantages of the proposed algorithm are the simple and
efficient design of connectivity coding, the use of CDC for
efficient differential coding, and the adoption of low-
complexity entropy coding. Extending the proposed method to
encoding 3D models with other attributes, such as colors,
texture coordinates, normals, and so on, would be a promising
research topic in the near future.

References

[1] ISO/IEC 14496-16:2006/Amd.1:2007 Part 16: Animation
Framework eXtension (AFX) AMENDMENT 1: Geometry and
Shadow, 2007.

[2] J. Peng, C. Kim, and C.-C.J. Kuo, “Technologies for 3D Triangular
Mesh Compression: A Survey,” J. Visual Commun. Image
Represent., vol.16, no. 6, Dec. 2005, pp. 688-733.

[3] S. Ramanathan et al., “Impact of Vertex Clustering on Registration-
Based 3D Dynamic Mesh Coding,” Image and Vision Computing,
vol. 26, no. 7, July 2008, pp. 1012-1026.

[4] E. Chang et al., “Vertex and Face Permutation Order Compression
for Efficient Animation Support,” Proc. Electronic Imaging, 2006.

[5] G. Son et al., “Simple and Fast Compression of 3D Meshes,” Int.
Conf. Convergence Inf. Technol., 2007, pp. 2175-2180.

[6] I.E.G. Richardson, H.264 and MPEG-4 Video Compression, John
Wiley & Sons Ltd., 2003.

[7] D. Salomon, Data Compression, 3rd Ed., Springer, 2004.
[8] 3D Mesh Test Models in the MPEG-4 3D Graphics Group,

http://www.gti.ssr.upm.es/~mpeg/3dgc/3Dmodels.

