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A trend in 3D mesh compression is codec design with low 
computational complexity which preserves the input vertex and 
face order. However, this added information increases the 
complexity. We present a fast 3D mesh compression method 
that compresses the redundant shared vertex information 
between neighboring faces using simple first-order differential 
coding followed by fast entropy coding with a fixed length 
prefix. Our algorithm is feasible for low complexity designs 
and maintains the order, which is now part of the MPEG-4 
scalable complexity 3D mesh compression standard. The 
proposed algorithm is 30 times faster than MPEG-4 3D mesh 
coding extension. 

Keywords: 3D mesh compression, prefix code, real-time 
encoding and decoding. 

I. Introduction 

With the plethora of 3D mesh-based models in many 
graphics applications such as games, the need for 3D mesh 
compression for transmission and storage purposes is ever 
increasing. Many proposed technologies, including the latest 
MPEG-4 3D mesh coding (3DMC) standard, achieve good 
compression efficiency [1], [2]. However, few of these tools 
are being used in the graphics industry, perhaps because of the 
complexity during the encoding and decoding processes in 
most applications where the computational complexity should 
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be minimized to support real-time rendering—one of the most 
important requirements for interactive 3D graphics.  

3D mesh compression has been extensively researched in 
many studies with a focus on compression efficiency. The 
compression of both static and dynamic meshes over time has 
been investigated [3]. Peng and others provided a good survey 
on various 3D mesh compression technologies [2]. However, 
even the most efficient 3D mesh compression methods, such as 
transformation, prediction, quantization, and entropy coding, 
that are used to compress various attributes in a 3D mesh 
model (connectivity, geometry, and other attributes) do not take 
into account the order of faces and/or vertices in a given 3D 
mesh representation, despite its importance for animation and 
other interactive rendering processes. 

In the MPEG-4 3DMC extension (3DMCe) [1], additional 
fields were introduced to transmit the original ordering 
information whenever needed. Considering the overhead 
incurred by transmitting the ordering information, the potential 
coding gain is lost, and the computational complexity of 
decoding and reordering increases greatly [4]. 

In this letter, we propose a fast 3DMC method that preserves 
the vertex/face ordering information with reasonable 
compression efficiency but improved computational 
complexity. The proposed method has the following features: 
fast connectivity coding by exploiting shared vertex properties, 
circular differential coding (CDC), and fast entropy coding 
using binary shift coding (BSC) and exponential Golomb 
coding (EGC) [5]. 

II. Proposed Codec 

As shown in Fig. 1, the proposed codec consists of four 
processes: quantization (for geometry and attributes), shared  
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Fig. 1. Encoding diagram of the proposed method. 
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vertex analysis (SVA) (for connectivity), CDC, and entropy 
coding. The quantization process is the same as that of  
MPEG-4 3DMC. In the following subsections, we explain 
SVA, CDC, and entropy coding in detail. 

1. Connectivity Coding: SVA 

As shown in Table 1, each face contains the list of vertices 
that form the faces. A vertex may be used by several faces; 
therefore, it is very likely that the vertices used in the previous 
face will also be used in the current face. Through SVA, the 
connectivity between the current face and the previously 
encoded face is checked by counting the number of shared 
vertices. If an input 3D mesh is triangular, the number of 
shared vertices varies from zero to three. Therefore, we define 
four different modes to represent vertices for the current face as 
shown in Fig. 2. For a triangular face, the vertices in the 
previous face may not be reused in the current face (mode 0), 
reused by one vertex (mode 1), reused by two vertices (mode 
2), or all reused (mode 3). Indices of new vertices in modes 0, 1, 
and 2 are subject to differential encoding by computing the 
difference in the vertex index (DVI), which is calculated by 
comparing the current vertex index and the previous vertex 
index. Depending on the number of unshared vertexes, 
additional information may be sent. For example, the location 
of the shared vertex (shared position) is necessary in mode 1, 
while the location of the unshared vertex (unshared position) is 
necessary in mode 2. The location field can be represented by 
two bits. For modes 2 and 3, the 1-bit face direction flag is 
included to indicate whether the order of the vertices in the 
current face is the same as that of the previous face. 

In Table 1, the encoding mode of the first face is mode 0 
because it does not have any previous face. We assume that all 
three vertex indices of the previous face are zeros; therefore, the 
DVIs for the first face are the same as the original vertex indices. 

In the decoding process, the original order of the vertex 
index of a face may or may not be preserved. For example, a 
face of the vertex indices (0, 1, 2) may be decoded as (2, 0, 1) 
or (1, 2, 0). This is not a problem because the triangle is 
represented by three vertices. A face of (0, 1, 2) and a face of  

Table 1. Example of SVA and CDC (Md = 8). 

Face vertex index  Face
index 1st 2nd 3rd

Mode Position 
Face 

direction 
DVI 

1
DVI 

2
DVI 

3

1 0 1 2 0 - - 0 1 2

2 2 3 0 2 1 1 - 2 - 

3 4 5 0 1 2 - 2 2 - 

4 0 3 4 2 1 1 - -2 - 

5 5 6 1 0 - - 5 3 -3

 

 

Fig. 2. SVA mode. 
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(0, 2, 1), however, are different in that the normal vectors of the 
two faces are in exactly the opposite directions. This is why we 
transmit the face direction flag whenever needed.  

2. Circular Differential Coding 

A DVI value from SVA may range from –(Md –1) to (Md –1), 
where Md is the total number of vertices. We can reduce the 
differential error range by half by calculating the circular 
differential as  
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where vic and vip represent the current and previous vertex 
indices. For example, the first DVI of face 5 in Table 1 is 
changed from 5 to –2. The decoding process of the CDC is 
carried out as follows: 
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3. Entropy Coding: BSC and EGC 

The main idea of the BSC method, called the “Huffman shift,”  
is to decide the bit length of the symbols. The size of a symbol in 
a BSC representation is a multiple of the length of the bits. A 
symbol in the BSC representation can be determined by a 
modulus operation with each quotient and remainder pair as 
shown in [5]. The probability density function of the CDC 
output is an exponential-like function which has a zero-mean 
and Md/2 as the maximum value. The fastest and best coding 
algorithm for this distribution is EGC [6]. 

We employed BSC and EGC because they produce good 
compression efficiency with very low computational complexity. 
In our previous research, we found that application of BSC to 
image and video coding is quite effective in that BSC is several 
times faster than conventional variable length decoding or 
arithmetic coding. Further details on BSC can be found in [7].  

III. Experimental Results  

We evaluated the proposed algorithm with two other methods: 
the MPEG-4 3DMCe reference codec and the quantization-
based compact representation (QBCR), which represent the two 
extreme points in compression efficiency and computational 
complexity. MPEG-4 3DMCe is an anchor point to evaluate the 
compression performance of the proposed method, and QBCR 
is an anchor point to evaluate the computational complexity. 
QBCR is the simplest design to build a low-complexity 3D 
mesh compression as it only uses quantization. It is also a fast 
design in that it requires only inverse quantization at the 
 

 

Fig. 3. Average compression ratio. 
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Fig. 4. Average encoding and decoding times of 4 methods. 
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decoder. Each field value (vertex or face) can go through the 
conventional graphics pipeline with additional quantization, 
which increases the complexity only negligibly. 

For evaluation, we used the 729 3D mesh models that are 
used in the MPEG-4 3DGC website [8]. We measured the 
compression efficiency by averaging the compression 
performance of the 729 models for each method as shown in 
Fig. 3. From the figure, it is quite clear that the performance of 
the proposed method is between that of 3DMCe and that of 
QBCR. The proposed method is compared with 3DMCe and 
QBCR in terms of computational complexity by measuring the 
encoding and decoding times. In Fig. 4, it is quite apparent that 
the proposed method and QBCR are much faster than 3DMCe. 
In summary, the proposed methods were 35 times faster on 
average than the 3DMCe encoder and decoder. 

IV. Conclusion 

In this letter, we presented a fast 3D mesh coding method 
using a shared vertex analysis. The experimental results 
showed that the proposed method achieved very low 
computational complexity with a reasonable coding gain. The 
major advantages of the proposed algorithm are the simple and 
efficient design of connectivity coding, the use of CDC for 
efficient differential coding, and the adoption of low-
complexity entropy coding. Extending the proposed method to 
encoding 3D models with other attributes, such as colors, 
texture coordinates, normals, and so on, would be a promising 
research topic in the near future. 
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