• Title/Summary/Keyword: 3D code

Search Result 1,381, Processing Time 0.039 seconds

Study on the Deformation Behavior by Spot Heating for thin plate (박판 점 곡직 시 변형 특성에 관한 연구)

  • Jang, Gyeong-Bok;Park, Jung-Gu;Jo, Si-Hun;Jang, Tae-Won
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.285-287
    • /
    • 2005
  • During fabrication of deck house block in passenger ships, the problem of unexpected large deformation and distortion frequently occurs. In this case, line and spot heating method were widely used to correct the distortion of thin plate structure. Spot heating was especially used for the case under 5mm thickness. Few papers are available on the working conditions of spot heating method but only little information on deformation control. In this study, evaluation was carried out on the temperature distribution of spot heating methods using FEA and practical experiments for various heating time. IIn FEA, heat input model was established using Tsuji's double Gaussian heat input mode (Tsuji, I., 1988). This model was verified by comparing with experimental data. Also radial shrinkage and angular distortion due to spot heating were determined and compared with experimental results. Thermo elasto-plastic analysis was performed using commercial FE code, MSC/MARC. Radial shrinkage and angular distortion were measured using 3D measuring apparatus. Based on these results, simplified analysis model for deformation by spot heating was established.

  • PDF

Design and Implementation of Smart Door Lock System using Beacon and QR Code (비콘과 QR코드를 이용한 스마트 도어락 시스템 설계 및 구현)

  • Choi, Jinu;Kim, Beomseok;Jeon, Jiye;Shin, Dongho;Kim, Jinok;Park, Jongho;Lee, Sukhoon;Jeong, Dongwon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.11a
    • /
    • pp.1311-1314
    • /
    • 2017
  • 이 논문은 비콘과 QR코드를 이용해 방문자 식별 및 원격제어를 구현한 스마트 도어락 시스템을 제안한다. 1인가구의 지속적인 증가에 따라 도어락에 원격제어와 보안의 필요성이 부각된다. 기존 논문에서는 동영상 전송방식, 블루투스 통신 방식 등 다양한 기술을 이용하여 구현한 도어락 시스템을 제안한다. 하지만 동영상 전송방식은 센서가 방문자를 오판단하는 경우가 발생하고, IoT기반의 실시간 스트리밍 기술을 이용한 도어락은 해제 후에 사용자가 집의 내부를 모니터링할 수 없다. 이 논문은 비콘과 안드로이드 어플리케이션, 라즈베리파이를 이용한 방문자 식별 및 원격제어를 구현한다. 또한 3D 프린팅을 이용하여 제작한 프로토타입을 보인다.

Finite Element Analysis and Fatigue Life Evaluation of Automotive Rubber Insulator (자동차 방진 고무 부품의 유한요소해석 및 피로수명평가)

  • Kim, W.D.;Woo, C.S.;Han, S.W.
    • Elastomers and Composites
    • /
    • v.33 no.3
    • /
    • pp.168-176
    • /
    • 1998
  • A strut rubber insulator is used in a suspension component of passenger cars. The uni-axial tension, compression, and the shear test were performed to acquire the constants of the strain energy functions which were Mooney-Rivlin model and Ogden model. The finite element analysis was executed to evaluate the behavior of deformation and stress distribution by using the commercial finite element code MARC ver K6.2. Also, the fatigue tests were carried out to obtain the fatigue life-load curve. The fatigue failure was initiated at the folded position of rubber, which was the same result predicted by the finite element analysis.

  • PDF

Vortex Cavitation from Baffle Plate and Pump Vibration in a Double-Suction Volute Pump

  • Sato, Toshiyuki;Nagahara, Takahide;Tanaka, Kazuhiro;Fuchiwaki, Masaki;Shimizu, Fumio;Inoue, Akira
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.76-83
    • /
    • 2011
  • This study highlights especially the mechanism of vortex cavitation occurrence from the end of the suction duct in a double-suction volute pump and pump oscillation which causes cavitation noise from the pump. In this study, full 3D numerical simulations have been performed using a commercial code inside the pump from the inlet of suction duct to the outlet of delivery duct. The numerical model is based on a combination of multiphase flow equations with the truncated version of the Rayleigh-Plesset model predicting the complicated growth and collapse process of cavity bubbles. The experimental investigations have also been performed on the cavitating flow with flow visualization to evaluate the numerical results.

Independent Turbo Coding and Common Interleaving Method among Transmitter Branches Achieving Peak Throughput of 1 Gbps in OFCDM MIMO Multiplexing

  • Kawamoto, Junichiro;Asai, Takahiro;Higuchi, Kenichi;Sawahashi, Mamoru
    • ETRI Journal
    • /
    • v.26 no.5
    • /
    • pp.375-383
    • /
    • 2004
  • This paper proposes a common interleaving method associated with independent channel-encoding among transmitter antenna branches in orthogonal frequency and code division multiplexing based on multiple-input multiple-output (MIMO) multiplexing to achieve an extremely high throughput such as 1 Gbps using a 100 MHz bandwidth. This paper also investigates the average packet error rate performance as a function of the average received signal energy per bit-to-background noise power spectrum density ratio $(E_b/N_0)$. We found that the loss in the required average received $E_b/N_0$ of the proposed method is only within approximately 0.3 dB in up to a 12-path Rayleigh fading channel, using 16QAM and Turbo coding with a coding rate of 5/6. We also clarify that even for a large fading correlation among antenna branches, 1 Gbps is still possible by increasing the transmission power. Therefore, the proposed method reduces the processing rate to 1/4 in the turbo decoder with only a slight loss in the required average received $E_b/N_0$.

  • PDF

Structural Design of a 750kW Composite Wind Turbine Blade (750kW급 풍력발전기용 복합재 블레이드의 구조설계)

  • Jung C.K.;Park S.H.;Han K.S.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.18-21
    • /
    • 2004
  • A GFRP based composite blade was developed for a 750kW wind energy conversion system of type class I. The blade sectional geometry was designed to have a general shell-spar structure. The load cases specified in the IEC61400-1 international specification were considered. For withstanding all relevant extreme loads, the structural analysis for the complete blade was performed using a commercial FEM code. The static load carrying capacity, buckling stability, blade tip deflection and natural frequencies at various rotational speeds were evaluated to satisfy the strength requirements in accordance with the IEC61400-1 and GL Regulations. For designing a lightweight blade, the thickness and the lay-up pattern of the skin-foam sandwich structures were optimized iteratively using the DOT program T-bolts were used for joining the blade root and the hub, which were modeled using a 3D FE volume model. In order to confirm the safety of the root connection, the static stresses of the thick root laminate and the steel. bolts were predicted by taking account of the bolt pretension and the root bending moments. The calculated stresses were compared with the material strengths.

  • PDF

Compression failure and fiber-kinking modeling of laminated composites

  • Ataabadi, A. Kabiri;Ziaei-Rad, S.;Hosseini-Toudeshky, H.
    • Steel and Composite Structures
    • /
    • v.12 no.1
    • /
    • pp.53-72
    • /
    • 2012
  • In this study, the physically-based failure models for matrix and fibers in compression and tension loading are introduced. For the 3D stress based fiber kinking model a modification is proposed for calculation of the fiber misalignment angle. All of these models are implemented into the finite element code by using the advantage of damage variable and the numerical results are discussed. To investigate the matrix failure model, purely in-plane transverse compression experiments are carried out on the specimens made by Glass/Epoxy to obtain the fracture surface angle and then a comparison is made with the calculated numerical results. Furthermore, shear failure of $({\pm}45)_s$ model is investigated and the obtained numerical results are discussed and compared with available experimental results. Some experiments are also carried out on the woven laminated composites to investigate the fracture pattern in the matrix failure mode and shown that the presented matrix failure model can be used for the woven composites. Finally, the obtained numerical results for stress based fiber kinking model and improved ones (strain based model) are discussed and compared with each other and with the available results. The results show that these models can predict the kink band angle approximately.

Finite Element Analysis for Multi-stage Forging Process Design of Bolt with Nonaxisymmetric Washer Cam (비축대칭 와셔 캠 볼트의 다단 단조공정 설계를 위한 유한요소 해석)

  • Kim, Kwan-Woo;Kim, Yi-Tae;Kim, Wan-Jong;Cho, Hae-Yong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.585-595
    • /
    • 2008
  • Process design of multi-stage forging for a bolt with nonaxisymmetric washer cam has been studied by using finite element method. For shape complexity of the bolt, it is impossible to manufacture in a single stage forging. To design multi-stage forging for the bolt the forging load and fiber flow of each step have been analyzed by using commercial finite element code DEFORM-3D. Simulated results have been compared with experimental ones. Multi-stage forging process has been designed with four stages. The workpiece should be eccentric shape until third forging stage. And then bolt head and washer of eccentrical shape is created in last stage. As a results, It was predicted that shape of product would be good and effective strain would be uniformly distributed in the product. Also, it was predicted whether defects would exist or not by reviewing the fiber flow.

DYNAMICAL INTERACTION OF SUPERNOVA REMNANT WITH PRE-EXISTING WIND BUBBLE (항성풍 거품 내에서의 초신성 잔해의 동역학적 구조)

  • Choi, Seung-Eon;Cha, Seung-Hun;Gu, Bon-Cheol
    • Publications of The Korean Astronomical Society
    • /
    • v.11 no.1
    • /
    • pp.27-47
    • /
    • 1996
  • We have performed the high resolution computer simulation with 1D spherical hydrodynamic code in order to study the dynamical evolution of supernova ejecta interacting with a pre-existing fast wind structure. The fast wind structure has been calculated with $M_{in}=3{\times}10^{-6}M_{\odot}yr^{-1}$ and ${\upsilon}_{in}=1000km/sec$, which velocity is higher than the critical velocity relating to the initial radiative cooling. The fast wind becomes initially adiabatic. After a shell formation time of ${\sim}4000yrs$, the wind becomes radiative cooling at the shell zone, forming a thin dense radiative shell and an adiabatic wind bubble afterward. When supernova explodes in the wind center at 20,000yrs after the wind evolves, the supernova ejecta, which has a dense distribution of ${\rho}{\propto}r^{-n}$(here we have n = 9), interacts initially with, the understood wind zone, producing forward and reverse shocks. The reverse shock heats the supernova ejecta and its temperature increases. In this study, as the mass of the supernova ejecta is larger than that of the wind shell ($M_{ej}=5M_{\odot}$, $M_{sw}=2M_{\odot}$), we can conform two shell structures: an outer shell by the supernova ejecta and a secondarily shocked wind shell by it. The secondarily shocked wind shell should accelerates in this case to be R-T unstable, consequently producing the knots.

  • PDF

NUMERICAL SIMULATIONS OF HH 211: A REFLECTION-SYMMETRIC BIPOLAR OUTFLOW

  • MORAGHAN, ANTHONY;LEE, CHIN-FEI;HUANG, PO-SHENG;VAIDYA, BHARGAV
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.113-114
    • /
    • 2015
  • Recent high-resolution, high-sensitivity observations of protostellar jets have shown many to possess an underlying 'wiggle' structure. HH 211 is one such example where recent sub-mm observations revealed a clear reflection-symmetric wiggle. An explanation for this is that the HH211 jet source is moving as part of a protobinary system. Here we test this assumption by simulating HH211 through 3D hydrodynamic simulations using the pluto code with a molecular chemistry and cooling module, and initial conditions based on an analytical model derived from SMA observations. Molecular chemistry allows us to accurately plot synthetic molecular emission maps and position-velocity diagrams for direct comparison to observations, enabling us to test the observational assumptions and put constraints on the physical parameters of HH211. Our preliminary results show that the reflection-symmetric wiggle can be recreated through the assumption of a jet source being part of a binary system.