• Title/Summary/Keyword: 3D building model

Search Result 699, Processing Time 0.027 seconds

Analysis of Hydraulic Characteristics Upstream of Dam and in Spillway Using Numerical Models (수치모형을 이용한 댐 상류 및 여수로 수리현상 해석)

  • Kim, Young-Han;Oh, Jung-Sun;Seo, Il-Won
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.5
    • /
    • pp.761-776
    • /
    • 2003
  • Numerical models were employed to investigate the hydrodynamics of water flow in the lake behind a dam and the spillway where supercritical flows and negative pressures are likely to occur. In this study, 2-D model, RMA2 was employed to examine the upstream flow pattern and 3-D CFD model, FLUENT was used to evaluate the three-dimensional flow in the approaching region and flow distributions in the spillways and discharge culverts. The bathymetry and the details of structures were carefully taken into consideration in building the models. The results from applying the 2-D model for the planned Hantan River Dam show that large eddies, the velocity of which reaches up to 1 m/s are occurring in several places upstream of the dam. That means that the 2-D numerical model could be utilized to investigate the two-dimensional flow patterns after the construction of a dam. Three-dimensional numerical results show that the approach flow varies depending on stages and discharge conditions, and velocities at spillways, discharge culverts, and sediment flushing tunnels are differently distributed. The velocity distributions obtained from the numerical model and a hydraulic model at the centerline of spillways 100 m upstream of the dam show reasonably similar results. It is expected that 2-D and 3-D numerical models ate useful tools to help optimize the dam design through investigating the flow patterns in the spillway and at the upstream of the dam, which is not always feasible in hydraulic modeling.

Verification of Build Part and Tool Paths for Metal 3-D Printing Process (3차원 금속 프린팅 공정에서의 조형파트 진단 및 조형공구경로 검증)

  • Lee, Kyubok;Jee, Haeseong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.2
    • /
    • pp.103-109
    • /
    • 2017
  • Metal 3D printing, which is an additive metal manufacturing (AMM) process, enables the development of full-density metallic tools and parts using metal powders that are precisely delivered and controlled for deposition with no powder bed. However, some unknown geometric defects and irregular geometric features on an STL model can possibly result in incorrect metal part fabrication after the build. This study first proposes a methodical approach for verifying the build part, including the missing facet problems in an STL model, by defining some irregular features that possibly exist on the part. Second, 2D tool paths on each build layer were investigated for detecting any singular region inside the layer. The method was implemented for building two sample STL models using a direct energy deposition process, and finally, it was visually simulated for diagnosis.

A study on extracting of 2D Drawings from BIM Model which consideration of Korean Standard of the CAD drawings (2D 전자도면표준을 고려한 BIM모델에서의 2D도면추출에 관한 연구)

  • Seong, Jun-Ho;Chae, Kab-Su;Choi, Jong-Chun;Kim, Khil-Chae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.573-577
    • /
    • 2009
  • 최근 건설업계에서는 3D객체기반인 Building Information Modelling(이하 BIM)에 대해 관심이 증가하기 시작했다. 하지만 BIM도입에 어려움을 격고 있는 것이 현실이며 특히 전통적인 정보교환 방식에서의 BIM을 적용하는데 가장 큰 어려움을 격고 있다. 현재 국내에 활용되는 전자도면 표준지침에는 BIM도입에 필요한 2D표준에 대한 내용은 없으며, BIM소프트웨어들도 이 부분에 대해서 충분히 커스터마이징 되지 않았다. 이는 BIM과도기에 2D도면의 필요성을 인식한다면 원할한 BIM도입을 위해서 반드시 그 대안이 필요하다. 따라서 본 논문에서는 국내 BIM 도입 시 국내 2D 전자도면표준을 고려한 BIM 모델에서의 원할한 2D도면추출에 대해 Template을 활용하는 방안을 제안하였다. 도면표준의 기준은 "건설CALS/EC 전자도면 작성 표준"에 근거 하여 표현기준 및 데이터 작성기준을 Template파일에 적용 시켰으며, 이 후 실험을 통해 BIM 도입 시 효율적인 도면 생산의 가능성을 확인 하였다.

  • PDF

Effect of slab stiffness on floor response spectrum and fragility of equipment in nuclear power plant building

  • Yousang Lee;Ju-Hyung Kim;Hong-Gun Park
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.3956-3972
    • /
    • 2023
  • The floor response spectrum (FRS) is used to evaluate the seismic demand of equipment installed in nuclear power plants. In the conventional design practice of NPP structure, the FRS is simplified using the lumped-mass stick model (LMSM), assuming the floor slab as a rigid diaphragm. In the present study, to study the variation of seismic response in a floor, the FRSs at different locations were generated by 3-D finite element model, and the response was compared to that of the rigid diaphragm model. The result showed that the FRS significantly varied due to the large opening in a floor, which was not captured by the rigid diaphragm model. Based on the result, seismic fragility analysis was performed for the anchorage of a heat exchanger, to investigate the effect of location-dependent FRS disparity on the high confidence low probability of failure (HCLPF).

Analysis of Georeferencing Accuracy in 3D Building Modeling Using CAD Plans (CAD 도면을 활용한 3차원 건축물 모델링의 Georeferencing 정확도 분석)

  • Kim, Ji-Seon;Yom, Jae-Hong;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.2
    • /
    • pp.117-131
    • /
    • 2007
  • Representation of building internal space is an active research area as the need for more geometrically accurate and visually realistic increases. 3 dimensional representation is common ground of research for disciplines such as computer graphics, architectural design and engineering and Geographic Information System (GIS). In many cases CAD plans are the starting point of reconstruction of 3D building models. The main objectives of building reconstruction in GIS applications are visualization and spatial analysis. Hence, CAD plans need to be preprocessed and edited to adapt to the data models of GIS SW and then georeferenced to enable spatial analysis. This study automated the preprocessing of CAD data using AutoCAD VBA (Visual Basic Application), and the processed data was topologically restructured for further analysis in GIS environment. Accuracy of georeferencing CAD data was also examined by comparing the results of coordinate transformation by using digital maps and GPS measurements as the sources of ground control points. The reconstructed buildings were then applied to visualization and network modeling.

3D Tunnel Face Modelling for Discontinuities Characterization: A Comparison of Lidar and Photogrammetry Methods (불연속성 특성화를 위한 3차원 터널 막장 모델링: 라이더 및 사진 측량 접근 방식의 비교 분석 중심으로)

  • Chuyen, Pham;Hyu-Soung, Shin
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.549-557
    • /
    • 2022
  • Tunnel face mapping involves the determination of rock discontinuities or weak rock conditions where extra support might be required. In this study, we investigated the application of Lidar scanning and photogrammetry to quantitatively characterize discontinuities of the rock mass on the tunnel face during excavation. The 3D models of tunnel faces generated by using these methods enable accurate and automatic discontinuity measurement to overcome the limitations of manual mapping. The results of this study show that both photogrammetry and Lidar can be used to reconstruct the 3D model of the tunnel face, although the photogrammetric 3D model is less detailed than its counterpart produced by Lidar. Given acceptable accuracy and cost-effectiveness, photogrammetry can be a fast, reliable, and low-cost alternative to Lidar for acquiring 3D models and determining rock discontinuities on tunnel faces.

Application Research on Obstruction Area Detection of Building Wall using R-CNN Technique (R-CNN 기법을 이용한 건물 벽 폐색영역 추출 적용 연구)

  • Kim, Hye Jin;Lee, Jeong Min;Bae, Kyoung Ho;Eo, Yang Dam
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.2
    • /
    • pp.213-225
    • /
    • 2018
  • For constructing three-dimensional (3D) spatial information occlusion region problem arises in the process of taking the texture of the building. In order to solve this problem, it is necessary to investigate the automation method to automatically recognize the occlusion region, issue it, and automatically complement the texture. In fact there are occasions when it is possible to generate a very large number of structures and occlusion, so alternatives to overcome are being considered. In this study, we attempt to apply an approach to automatically create an occlusion region based on learning by patterning the blocked region using the recently emerging deep learning algorithm. Experiment to see the performance automatic detection of people, banners, vehicles, and traffic lights that cause occlusion in building walls using two advanced algorithms of Convolutional Neural Network (CNN) technique, Faster Region-based Convolutional Neural Network (R-CNN) and Mask R-CNN. And the results of the automatic detection by learning the banners in the pre-learned model of the Mask R-CNN method were found to be excellent.

A Collaborative Design System in Architecture: defining the process and testing its system environment (建築 協業設計 시스템 구축을 위한 프로세스와 環境 試險에 관한 연구)

  • Kim, U.;Kang, M.H.;Choi, J.W.;Kim, S.A.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.1
    • /
    • pp.57-65
    • /
    • 2002
  • The purpose of this research is to develop a collaborative architectural design system. Design collaboration requires an extensive use of communication methods as well as the participation of various experts from different domains. Such facts address several issues when the Internet and digital media are able to create a completely new work environment. The building design process was studied, and possible modes of design collaboration were defined. A prototype system is being developed in accordance with the defined collaboration model. The system integrates a set of communication tools and web-based design media. Such media include a synchronous multi-user web CAD tool, a schematic 3D design tool, and a electronic whiteboard. A project database was designed in order to coordinate the project-wide communication which elaborates technologies such as web-based data access. In order to find out the effectiveness of the system, a usability test was performed both in quantitative and qualitative manner. The research will contribute to the development of world-wide design and construction collaboration through the Internet, which is becoming a mainstream building process model.

BIM-DRIVEN ENERGY ANALYSIS FOR ZERO NET ENERGY TEST HOME (ZNETH)

  • Yong K. Cho;Thaddaeus A. Bode;Sultan Alaskar
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.276-284
    • /
    • 2009
  • As an on-going research project, Zero Net Energy Test Home (ZNETH) project investigates effective approaches to achieve whole-house environmental and energy goals. The main research objectives are (1) to identify energy saving solutions for designs, materials, and construction methods for the ZNETH house and (2) to verify whether ZNETH house can produce more energy than the house uses by utilizing Building Information Modeling (BIM) and energy analysis tools. The initial project analysis is conducted using building information modeling (BIM) and energy analysis tools. The BIM-driven research approach incorporates architectural and construction engineering methods for improving whole-building performance while minimizing increases in overall building cost. This paper discusses about advantages/disadvantages of using BIM integrated energy analysis, related interoperability issues between BIM software and energy analysis software, and results of energy analysis for ZNETH. Although this investigation is in its early stage, several dramatic outcomes have already been observed. Utilizing BIM for energy analysis is an obvious benefit because of the ease by which the 3D model is transferred, and the speed that an energy model can be analyzed and interpreted to improve design. The research will continue to use the ZNETH project as a testing bed for the integration of sustainable design into the BIM process.

  • PDF

A study on the Establishment of Integrated National Knowledge and Information Network Infrastructure for Human Resource Development (인적자원개발을 위한 국가 지식정보인프라 통합 정보망 구축 방향에 대한 고찰)

  • Jeong, Dong-Yeoul
    • Journal of Information Management
    • /
    • v.35 no.3
    • /
    • pp.1-28
    • /
    • 2004
  • The purpose of this paper is to suggest guidelines for building up an integrated information network(IIN) model that enable to enhance production, flow and use of knowledge and information. The IIN consists of five areas of key infrastructure, such as, education, R&D, labor market, school-industry cooperation, and lifelong education information infrastructure. Based on the analysis of current situations and problems of each information infrastructure, this paper raises variety of issues and solution for the IIN model. Directions for building up the IIN includes both information base infrastructure and information support infrastructure.