• Title/Summary/Keyword: 3D beam element

Search Result 310, Processing Time 0.025 seconds

Design Analysis of Butene Storage Spherical Tank (부텐 구형저장조의 설계해석)

  • Ahn, Hee-Jae;Park, Jung-Yean;Lee, Choong-Dong;Lee, Eun-Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.129-136
    • /
    • 1994
  • Spherical storage tank for chemical plant is analyzed for the loads and their combinations in accordance with Section Ⅷ, Division 2 of the ASME Boiler and Pressure Vessel Code. Design Analysis of Butene storage tank is carried out by utilizing 3-dimensional plate and beam elements of a general purpose finite element program. Two separate 3-D finite element models are used; one for the global analysis of the entire spherical storage tank, the other for the local analysis of junction part and its vicinity of shell-to-supporting structures. The analysis is focused on the equator plate in the shell and the junction part of shell-to-supporting structures.

  • PDF

3- D Analysis of Concrete Slab Track System (콘크리트 슬래브 궤도의 3차원 거동해석)

  • Kim, Jeong-Il;Jang, Seung-Yup
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.955-960
    • /
    • 2004
  • In this study, three dimensional FE analysis of concrete slab track has been performed in order to develop the realistic design of precast concrete slab track. The precast slab track system including the precast concrete slab panel and the grout layer is modeled using the three dimensional solid element with crack softening effect. The input load is computed from the one dimensional beam element model constituting the rail and several discrete springs. To investigate the effect of the longitudinal connection of slab panels, two different systems-continuous and discrete systems - are modeled. The analytical results show that the stresses of both the slab panel and the grout layer are in the range of linear elastic, and, at the interface between two adjacent panels, the primary stresses of the grout layer of the discrete system are higher than those of the continuous system. However, The overall stress levels of the grout layer are very low relative to the strength of th grout.

  • PDF

Design of Dual-band Microstrip Antenna for ISM Bandwidth using Cross Patch (십자형 패치를 이용한 ISM 대역용 이중대역 마이크로스트립 안테나 설계)

  • 박기동;정문숙;임영석
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.241-245
    • /
    • 2002
  • Dual-band microstrip antenna is designed for industrial-scientific-medical(ISM) band of 2.4㎓ and 5.8㎓ using finite-difference time-domain method(FDTD). Cross Patch fed by aperture in the ground plane of microstrip line is proposed as radiation element of antenna, which is 2 rectangular Patch is overlapped. To design antenna, change of input impedance by aperture and stub length change is examined. And it is investigated that center frequency and -10 ㏈ bandwidth by Length of radiation element and width change. Experimental result about reflection Loss confirmed that agree well with analysis results of FDTD and IE3D, And -3 ㏈ beam width, front to back ratio and gain in frequency 2.43㎓ and 5.79㎓ is presented by measuring radiation Pattern of antenna.

  • PDF

Three dimensional finite element simulations of fracture tests using the Craft concrete model

  • Jefferson, A.D.;Barr, B.I.G.;Bennett, T.;Hee, S.C.
    • Computers and Concrete
    • /
    • v.1 no.3
    • /
    • pp.261-284
    • /
    • 2004
  • Two enhancements to a recently developed plastic-damage-contact model for concrete are presented. The model itself, which uses planes of degradation that can undergo damage and separation but that can regain contact according to a contact law, is described. The first enhancement is a new damage evolution function which provides a completely smooth transition from the undamaged to the damaged state and from pre-peak to post-peak regions. The second is an improved contact function that governs the potential degree of contact with increasing opening on a crack plane. The use of a damage evolution function with a pre-peak has implications for the consistent tangent matrix/stress recovery algorithm developed for the model implementation, and amendments to this algorithm to accommodate the new function are described. A series of unpublished experimental tests on notched specimens undertaken in Cardiff in the mid 1990s are then described. These include notched beam tests as well as prismatic and cylindrical torsion tests. The tests are then considered in three dimensional finite element analyses using the modified Craft model implemented in the finite element program LUSAS. Comparisons between experimental and numerical data show reasonable agreement except that the numerical simulations do not fully describe the latter stages of the softening responses for the torsion examples. Finally, it is concluded that the torsion tests described provide useful benchmark examples for the validation of three-dimensional numerical models for concrete.

Plasma-Assisted Molecular Beam Epitaxy of InXGa1-XN Films on C-plane Sapphire Substrates (플라즈마분자선에피탁시법을 이용한 C-면 사파이어 기판 위질화인듐갈륨박막의 에피탁시 성장)

  • Shin, Eun-Jung;Lim, Dong-Seok;Lim, Se-Hwan;Han, Seok-Kyu;Lee, Hyo-Sung;Hong, Soon-Ku;Joeng, Myoung-Ho;Lee, Jeong-Yong;Yao, Takafumi
    • Korean Journal of Materials Research
    • /
    • v.22 no.4
    • /
    • pp.185-189
    • /
    • 2012
  • We report plasma-assisted molecular beam epitaxy of $In_XGa_{1-X}N$ films on c-plane sapphire substrates. Prior to the growth of $In_XGa_{1-X}N$ films, GaN film was grown on the nitride c-plane sapphire substrate by two-dimensional (2D) growth mode. For the growth of GaN, Ga flux of $3.7{\times}10^{-8}$ torr as a beam equivalent pressure (BEP) and a plasma power of 150 W with a nitrogen flow rate of 0.76 sccm were fixed. The growth of 2D GaN growth was confirmed by $in-situ$ reflection high-energy electron diffraction (RHEED) by observing a streaky RHEED pattern with a strong specular spot. InN films showed lower growth rates even with the same growth conditions (same growth temperature, same plasma condition, and same BEP value of III element) than those of GaN films. It was observed that the growth rate of GaN is 1.7 times higher than that of InN, which is probably caused by the higher vapor pressure of In. For the growth of $In_xGa_{1-x}N$ films with different In compositions, total III-element flux (Ga plus In BEPs) was set to $3.7{\times}10^{-8}$ torr, which was the BEP value for the 2D growth of GaN. The In compositions of the $In_xGa_{1-x}N$ films were determined to be 28, 41, 45, and 53% based on the peak position of (0002) reflection in x-ray ${\theta}-2{\theta}$ measurements. The growth of $In_xGa_{1-x}N$ films did not show a streaky RHEED pattern but showed spotty patterns with weak streaky lines. This means that the net sticking coefficients of In and Ga, considered based on the growth rates of GaN and InN, are not the only factor governing the growth mode; another factor such as migration velocity should be considered. The sample with an In composition of 41% showed the lowest full width at half maximum value of 0.20 degree from the x-ray (0002) omega rocking curve measurements and the lowest root mean square roughness value of 0.71 nm.

A Study on the Shaped-Beam Antenna with High Gain Characteristic (고이득 특성을 갖는 성형 빔 안테나에 대한 연구)

  • Eom, Soon-Young;Yun, Je-Hoon;Jeon, Soon-Ick;Kim, Chang-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.1 s.116
    • /
    • pp.62-75
    • /
    • 2007
  • This paper describes a shaped-beam antenna for increasing the antenna gain of a radiating element. The proposed antenna structure is composed of an exciting element and a multi-layered disk array structure(MDAS). The stack micro-strip patch elements were used as the exciter for effectively radiating the electromagnetic power to the MDAS over the broadband, and finite metallic disk array elements - which give the role of a director for shaping the antenna beam with the high gain - were finitely and periodically layered onto it. The efficient power coupling between the exciter and the MDAS should be carried out in such a way that the proposed antenna has a high gain characteristic. The design parameters of the exciter and the MDAS should be optimized together to meet the required specifications to meet the required specifications. In this study, a shaped-beam antenna with high gain was optimally designed under the operating conditions with a linear polarization and the frequency band of $9.6{\sim}10.4\;GHz$. Two methods constructed using thin dielectric film and dielectric foam materials respectively were also proposed in order to implement the MBAS of the antenna. In particular, through the computer simulation process, the electrical performance variations of the antenna with the MDAS realized by the thin dielectric film materials were shown according to the number of disk array elements in the stack layer. Two kinds of antenna breadboard with the MDAS realized with the thin dielectric film and dielectric foam materials were fabricated, but experimentation was conducted only on the antenna breadboard(Type 1) with the MDAS realized with the thin dielectric film materials according to the number of disk array elements in the stack layer in order to compare it with the electrical performance variations obtained during the simulation. The measured antenna gain performance was found to be in good agreement with the simulated one, and showed the periodicity of the antenna gain variations according to the stack layer number of the disk array elements. The electrical performance of the Type 1 antenna was measured at the center frequency of 10 GHz. As the disk away elements became the ten stacks, a maximum antenna gain of 15.65 dBi was obtained, and the measured return loss was not less than 11.4 dB within the operating band. Therefore, a 5 dB gain improvement of the Type 1 antenna can be obtained by the MDAS that is excited by the stack microstrip patch elements. As the disk array elements became the twelve stacks, the antenna gain of the Type 1 was measured to be 1.35 dB more than the antenna gain of the Type 2 by the outer dielectric ring effect, and the 3 dB beam widths measured from the two antenna breadboards were about $28^{\circ}$ and $36^{\circ}$ respectively.

Low-Cost Hologram Module for Optical Pickup by Adjusting Photodiode Package (포토 다이오드 조정방식을 이용한 광 픽업용 저가 홀로그램 모듈)

  • Jeong, Ho-Seop;Kyong, Chon-Su
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.4
    • /
    • pp.345-353
    • /
    • 2005
  • We proposed a new and cost-effective method fer assembling holographic pickup modules without any high resolution vision system. Assembling was accomplished by adjusting photodiode package only, leading to a low cost, holographic pickup module. Focus and tracking error signals were simply determined by comparing spot sizes and by using the 3 beam method, respectively, based on four-sectional holographic optical elements. In experiment, we assembled a hologram module and estimated performance of the proposed method fur a holographic pickup module used in compact disc system.

p-Adaptive Analysis by Three Dimensional Hierarchical Hexahedral Solid Element (3차원 계층적 육면체 고체요소에 의한 p-적응적 해석)

  • Woo, Kwang-Sung;Jo, Jun-Hyung;Shin, Young-Sik
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.4
    • /
    • pp.81-90
    • /
    • 2008
  • This paper presents a finite element formulation for the three-dimensional hierarchical solid element using Integrals of Legendre polynomials. The proposed hexahedral solid element is composed of four different modes including vertex, edge, face, and internal mode, respectively. The eigenvalue and patch test have been carried out to confirm the zero-energy mode and constant strain condition. In addition to these, a posteriori error estimation has been studied for the p-adaptive finite element analysis that is based on a smoothing technique to compute a post-processed solution from the finite element solution. The uniform p-refinement and non-uniform p-refinement are compared in terms of convergence rate as the number of degree of freedom is increased. The simple cantilever beam is tested to show the performance of the proposed solid element.

  • PDF

Seismic analysis of CFST frames considering the effect of the floor slab

  • Huang, Yuan;Yi, Weijian;Nie, Jianguo
    • Steel and Composite Structures
    • /
    • v.13 no.4
    • /
    • pp.397-408
    • /
    • 2012
  • This paper describes the refined 3-D finite element (FE) modeling of composite frames composed of concrete-filled steel tubular (CFST) columns and steel-concrete composite beams based on the test to get a better understanding of the seismic behavior of the steel-concrete composite frames. A number of material nonlinearities and contact nonlinearities, as well as geometry nonlinearities, were taken into account. The elastoplastic behavior, as well as fracture and post-fracture behavior, of the FE models were in good agreement with those of the specimens. Besides, the beam and panel zone deformation of the analysis models fitted well with the corresponding deformation of the specimens. Parametric studies were conducted based on the refined finite elememt (FE) model. The analyzed parameters include slab width, slab thickness, shear connection degree and axial force ratio. The influences of these parameters, together with the presence of transverse beam, on the seismic behavior of the composite frame were studied. And some advices for the corresponding seismic design provisions of composite structures were proposed.

Static behavior of steel tubular structures considering local joint flexibility

  • Wang, Yamin;Shao, Yongbo;Cao, Yifang
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.425-439
    • /
    • 2017
  • As a thin-walled structure, local joint flexibility (LJF) in a tubular structure is prominent, and it may produce significant effect on the static performance for the overall structure. This study presents a simplified analytical model to analyze the static behavior for a steel tubular structure with LJF. The presented model simplifies a tubular structure into a frame model consisted of beam elements with considering the LJFs at the connections between any two elements. Theoretical equations of the simplified analytical model are deduced. Through comparison with 3-D finite element results of two typical planar tubular structures consisted of T- and Y-joints respectively, the presented method is proved to be accurate. Furthermore, the effect of LJF on the overall performance of the two tubular structures (including the deflection and the internal forces) is also investigated, and it is found from analyses of internal forces and deformation that a rigid connection assumption in a frame model by using beam elements in finite element analysis can provide unsafe and inaccurate estimation.