• Title/Summary/Keyword: 3D Video Transmission

Search Result 83, Processing Time 0.025 seconds

Development of a Cost-Effective Tele-Robot System Delivering Speaker's Affirmative and Negative Intentions (화자의 긍정·부정 의도를 전달하는 실용적 텔레프레즌스 로봇 시스템의 개발)

  • Jin, Yong-Kyu;You, Su-Jeong;Cho, Hye-Kyung
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.3
    • /
    • pp.171-177
    • /
    • 2015
  • A telerobot offers a more engaging and enjoyable interaction with people at a distance by communicating via audio, video, expressive gestures, body pose and proxemics. To provide its potential benefits at a reasonable cost, this paper presents a telepresence robot system for video communication which can deliver speaker's head motion through its display stanchion. Head gestures such as nodding and head-shaking can give crucial information during conversation. We also can assume a speaker's eye-gaze, which is known as one of the key non-verbal signals for interaction, from his/her head pose. In order to develop an efficient head tracking method, a 3D cylinder-like head model is employed and the Harris corner detector is combined with the Lucas-Kanade optical flow that is known to be suitable for extracting 3D motion information of the model. Especially, a skin color-based face detection algorithm is proposed to achieve robust performance upon variant directions while maintaining reasonable computational cost. The performance of the proposed head tracking algorithm is verified through the experiments using BU's standard data sets. A design of robot platform is also described as well as the design of supporting systems such as video transmission and robot control interfaces.

H.264 Encoding Technique of Multi-view Video expressed by Layered Depth Image (계층적 깊이 영상으로 표현된 다시점 비디오에 대한 H.264 부호화 기술)

  • Shin, Jong-Hong;Jee, Inn-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.43-51
    • /
    • 2014
  • Multi-view video including depth image is necessary to develop a new compression encoding technique for storage and transmission, because of a huge amount of data. Layered depth image is an efficient representation method of multi-view video data. This method makes a data structure that is synthesis of multi-view color and depth image. This efficient method to compress new contents is suggested to use layered depth image representation and to apply for video compression encoding by using 3D warping. This paper proposed enhanced compression method using layered depth image representation and H.264/AVC video coding technology. In experimental results, we confirmed high compression performance and good quality of reconstructed image.

A Cross-Layer Unequal Error Protection Scheme for Prioritized H.264 Video using RCPC Codes and Hierarchical QAM

  • Chung, Wei-Ho;Kumar, Sunil;Paluri, Seethal;Nagaraj, Santosh;Annamalai, Annamalai Jr.;Matyjas, John D.
    • Journal of Information Processing Systems
    • /
    • v.9 no.1
    • /
    • pp.53-68
    • /
    • 2013
  • We investigate the rate-compatible punctured convolutional (RCPC) codes concatenated with hierarchical QAM for designing a cross-layer unequal error protection scheme for H.264 coded sequences. We first divide the H.264 encoded video slices into three priority classes based on their relative importance. We investigate the system constraints and propose an optimization formulation to compute the optimal parameters of the proposed system for the given source significance information. An upper bound to the significance-weighted bit error rate in the proposed system is derived as a function of system parameters, including the code rate and geometry of the constellation. An example is given with design rules for H.264 video communications and 3.5-4 dB PSNR improvement over existing RCPC based techniques for AWGN wireless channels is shown through simulations.

Implementation and Performance Measurement of Personal Media Gateway for Applications over BcN Networks (BcN용 미디어 프로세서형 단말(PMG)의 구현 및 성능시험)

  • Jang, Seong-Hwan;Yang, Soo-Kyung;Cha, Young;Choi, Woo-Suk;Son, Seok-Bae;Kim, Jung-Joon
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2005.08a
    • /
    • pp.329-332
    • /
    • 2005
  • In this paper, we describe implementation of personal media gateway (PMG) for applications over BcN networks. PMG is a TV based set-top terminal, which enables transmission of Full D1 high quality video and audio at the speed of maximum 2Mbps. It supports SIP protocol and QoS for the BcN networks. The hardware of the PMG consists of host module, audio/video codec processing module, DTMF module, and remote control I/O module. H.263 and MPEG4 software are implemented in DSP as codec for hi-directional communication and streaming, respectively. G.711 and Ogg-Vorbis are implemented as audio codec. We examined the quality of video using the Video Quality Test Equpment, which was developed by KT Convergence Lab. The experimental results show the video quality of MOS 4.1 and audio quality of MOS 4.3. We expect that PMG will be prospective business models, and create new customer value.

  • PDF

Video Error Concealment using Neighboring Motion Vectors (주변의 움직임 벡터를 사용한 비디오 에러 은닉 기법)

  • 임유두;이병욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.3C
    • /
    • pp.257-263
    • /
    • 2003
  • Error control and concealment in video communication is becoming increasingly important because transmission errors can cause single or multiple loss of macroblocks in video delivery over unreliable channels such as wireless networks and the internet. This paper describes a temporal error concealment by postprocessing. Lost image blocks are overlapped block motion compensated (OBMC) using median of motion vectors from adjacent blocks at the decoder. The results show a significant improvement over zero motion error concealment and other temporal concealment methods such as Motion Vector Rational Interpolation or Side Match Criterion OBMC by 1.4 to 3.5㏈ gain in PSNR. We present experimental results showing improvements in PSNR and computational complexity.

The Linearity Analysis of Low Noise Down-Converter for Ka-band UHD Satellite-broadcasting (Ka-대역 UHD 위성방송용 저 잡음 하향변환기의 선형성 분석)

  • Mok, Gwang-Yun;Rhee, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.2
    • /
    • pp.267-272
    • /
    • 2017
  • In this paper, we suggested that a RF-front module of down-converter that represents the lowest noise figure to receive high quality video signals because the attenuation occurs in the atmosphere over 20GHz. By budget analysis of CDR, SFDR and CIP3 of RF-FEM, we also analyzed the parameters and linearity that presents high dynamic range. The total gain of designed Ka-band down-converter is 61.8dBand noise figure is 1.05dB, so gain and noise figures show excellent properties. In the future, the designed RF-FEM will be applied to the Ka-band satellite down-converter for UHD-class video transmission.

An Efficient Error Concealment Algorithm using Adaptive Selection of Adjacent Motion Vectors (주변 움직임 벡터의 적응적 선택을 이용한 효율적인 에러은닉 알고리즘)

  • Lee Hyun-Woo;Seong Dong-Su
    • The KIPS Transactions:PartB
    • /
    • v.11B no.6
    • /
    • pp.661-666
    • /
    • 2004
  • In the wireless communication systems, transmission errors degrade the reconstructed image quality severely. Error concealment in video communication is becoming increasingly important because transmission errors can cause single or multiple loss of macroblocks in video delivery over unreliable channels such as wireless networks and internet. Among various techniques which can reduce the degradation of video quality, the error concealment techniques yield good performance without overheads and the modification of the encoder. In this paper, lost image blocks can be concealed with the OBMC(Overlapped Block Motion Compensation) after new motion vectors of the lost image blocks are allocated by median values using the adaptive selection with motion vectors of adjacent blocks. We know our algorithm is more effective in case of continuous GOB loss. The results show a significant improvement over the zero motion error concealment and other temporal concealment methods such as Motion Vector Rational Interpolation or Median+OBMC by 3dB gain in PSNR.

Layered Depth Image Representation And H.264 Encoding of Multi-view video For Free viewpoint TV (자유시점 TV를 위한 다시점 비디오의 계층적 깊이 영상 표현과 H.264 부호화)

  • Shin, Jong Hong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.7 no.2
    • /
    • pp.91-100
    • /
    • 2011
  • Free viewpoint TV can provide multi-angle view point images for viewer needs. In the real world, But all angle view point images can not be captured by camera. Only a few any angle view point images are captured by each camera. Group of the captured images is called multi-view image. Therefore free viewpoint TV wants to production of virtual sub angle view point images form captured any angle view point images. Interpolation methods are known of this problem general solution. To product interpolated view point image of correct angle need to depth image of multi-view image. Unfortunately, multi-view video including depth image is necessary to develop a new compression encoding technique for storage and transmission because of a huge amount of data. Layered depth image is an efficient representation method of multi-view video data. This method makes a data structure that is synthesis of multi-view color and depth image. This paper proposed enhanced compression method using layered depth image representation and H.264/AVC video coding technology. In experimental results, confirmed high compression performance and good quality reconstructed image.

Region Selective Transmission Method of MMT based 3D Point Cloud Content (MMT 기반 3차원 포인트 클라우드 콘텐츠의 영역 선별적 전송 방안)

  • Kim, Doohwan;Kim, Junsik;Kim, Kyuheon
    • Journal of Broadcast Engineering
    • /
    • v.25 no.1
    • /
    • pp.25-35
    • /
    • 2020
  • Recently, the development of image processing technology, as well as hardware performance, has been continuing the research on 3D point processing technology that provides users with free viewing angle and stereoscopic effect in various fields. Point cloud technology, which is a type of representation of 3D point, has attracted attention in various fields because it can acquired/expressed point precisely. However, since Hundreds of thousands, millions of point are required to represent one 3D point cloud content, there is a disadvantage that a larger amount of storage space is required than a conventional 2D content. For this reason, the MPEG (Moving Picture Experts Group), an international standardization organization, is continuing to research how to efficiently compress, store, and transmit 3D point cloud content to users. In this paper, a V-PCC bitstream generated by a V-PCC (Video-based Point Cloud Compression) encoder proposed by the MPEG-I (Immersive) group is composed of an MPU (Media Processing Unit) defined by the MMT. In addition, by extending the signaling message defined in the MMT standard, a parameter for a segmented transmission method of the 3D point cloud content by area and quality parameters considering the characteristic of the 3D point cloud content, so that the quality parameters can be selectively determined according to the user's request. Finally, in this paper, we verify the result through design/implementation of the verification platform based on the proposed technology.

Hybrid Down-Sampling Method of Depth Map Based on Moving Objects (움직임 객체 기반의 하이브리드 깊이 맵 다운샘플링 기법)

  • Kim, Tae-Woo;Kim, Jung Hun;Park, Myung Woo;Shin, Jitae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.11
    • /
    • pp.918-926
    • /
    • 2012
  • In 3D video transmission, a depth map being used for depth image based rendering (DIBR) is generally compressed by reducing resolution for coding efficiency. Errors in resolution reduction are recovered by an appropriate up-sampling method after decoding. However, most previous works only focus on up-sampling techniques to reduce errors. In this paper, we propose a novel down-sampling technique of depth map that applies different down-sampling rates on moving objects and background in order to enhance human perceptual quality. Experimental results demonstrate that the proposed scheme provides both higher visual quality and peak signal-to-noise ratio (PSNR). Also, our method is compatible with other up-sampling techniques.