• Title/Summary/Keyword: 3D Structural Modeling

Search Result 373, Processing Time 0.024 seconds

A Study on the Application of BIM for Reinforcement Concrete Structural Work (철근 콘크리트 공사에서의 BIM 적용 연구)

  • Ahn, Jae-Hong;Lim, Nam-Gi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.158-166
    • /
    • 2018
  • The application of the BIM for architectural and structural work accompanied many trials-and-errors on project based on BIM by this time Ten years have passed since BIM issued, but it is not activated. This study suggests ways to activate BIM for architectural and structural work. The reason for choosing the structure construction is as follows. Construction cost is a high proportion of structural construction cost. On the other hand, the number of related materials is small, and the first in the 3D modeling process is structure modeling. And build BIM-based Structural Database by quantity take-off. This study shows the applicability of BIM through practical cases. This study is expected to provide suggestion for the successful implementation of BIM-based projects.

Seismic Assessment and Performance of Nonstructural Components Affected by Structural Modeling

  • Hur, Jieun;Althoff, Eric;Sezen, Halil;Denning, Richard;Aldemir, Tunc
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.387-394
    • /
    • 2017
  • Seismic probabilistic risk assessment (SPRA) requires a large number of simulations to evaluate the seismic vulnerability of structural and nonstructural components in nuclear power plants. The effect of structural modeling and analysis assumptions on dynamic analysis of 3D and simplified 2D stick models of auxiliary buildings and the attached nonstructural components is investigated. Dynamic characteristics and seismic performance of building models are also evaluated, as well as the computational accuracy of the models. The presented results provide a better understanding of the dynamic behavior and seismic performance of auxiliary buildings. The results also help to quantify the impact of uncertainties associated with modeling and analysis of simplified numerical models of structural and nonstructural components subjected to seismic shaking on the predicted seismic failure probabilities of these systems.

DETAILS OF PRACTICAL IMPLEMENTATION OF REAL-TIME 3D TERRAIN MODELING

  • Young Suk Kim;Seungwoo Han;Hyun-Seok Yoo;Heung-Soon Lim;Jeong-Hoon Lee;Kyung-Seok Lee
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.487-492
    • /
    • 2009
  • A large-scaled research project titled "Intelligent Excavating System (IES)" sponsored by Korean government has launched in 2006. An issue of real-time 3D terrain modeling has become a crucial point for successful implementation of IES due to many application limitations of state-of-the-art techniques developed in various high-technology fields. Many feasible technologies such as laser scanning, structured lighting and so on were widely reviewed by professionals and researchers for one year. Various efforts such as literature reviews, interviews, and indoor experiments make us select a structural light technique and stereo vision technique as appropriate techniques for accomplishment of real-time 3D terrain modeling. It, however, revealed that off-the-shelf products of structural light and stereo-vision technique had many technical problems which should be resolved for practical applications in IES. This study introduces diverse methods modifying off-the-shelf package of the structural light method, one of feasible techniques and eventually allowing this technique to be successfully utilized for achieving fundamental research goals. This study also presents many efforts to resolve practical difficulties of this technique considering basic characteristics of excavating operations and particular environment of construction sites. Findings showed in this study would be beneficial for other researchers to conduct new researches for application of vision techniques to construction fields by provision of detail issues about practical application and diverse practical methods as solutions overcoming these issues.

  • PDF

Development of Construction Method based Automated Estimation System Considering Characteristics of the Domestic Construction Industry (국내 건설 산업에서의 물량산출 특성을 고려한 공법기반 견적자동화 시스템 개발)

  • Jung, Jun-Ho;Lee, Chang-Hee;Kim, Seong-Ah;Chin, Sang-Yoon;Choi, Cheol-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.93-96
    • /
    • 2010
  • 현재 국내외에서 Building Information Modeling을 적용한 여러 분야의 연구가 활발하게 진행되고 있으며, 일부 국외에서는 3D 기반의 견적을 실제 프로젝트에 반영하고 있다. 반면, 국내 건설 프로젝트에서는 여전히 2D 설계도면과 물량산출 프로그램을 이용하여 견적이 이루어지고 있다. 작업의 신속성 및 정확성을 중요시하는 국내 견적 문화에서는 3D 기반의 물량산출 방식 도입을 부정적으로 바라보는 시각이 있으나, 향후 건설 산업의 경쟁력 확보를 위해서 3D 기반 견적작업이 필요하다. 이에 국외에서 상용화된 견적 시스템을 국내 건설 프로젝트에 적용한 결과, 몇 가지 한계점이 있는 것으로 드러나 국내 견적 방식에 적합한 3D기반의 물량산출 프로그램 개발이 절실한 상황이다. 따라서 본 연구에서는 국내 건설 산업에서의 물량 산출 특성을 반영한 공법기반 견적자동화 시스템 개발 및 검증을 통해 국내 3D 기반의 견적 도입을 앞당기고자 한다.

  • PDF

Seismic analysis and modeling of isolated elevated liquid storage tanks

  • Seleemah, Ayman A.;El-Sharkawy, Mohamed
    • Earthquakes and Structures
    • /
    • v.2 no.4
    • /
    • pp.397-412
    • /
    • 2011
  • In this paper, the seismic response of elevated broad and slender liquid storage tanks isolated by elastomeric or sliding bearings was investigated. The accuracy of predictions of SAP2000 vs. 3D-BASIS-ME programs was examined. A comparative study of the performance of base isolated tanks when isolation bearings are placed at the top or at the bottom of the supporting tower structure was conducted. It was found that base isolation is quite effective in reducing the earthquake response of elevated liquid storage tanks in which high reductions of base shear and shaft displacement were achieved. Modeling the isolated tanks in SAP2000 was very successful in producing results that are nearly identical to those of program 3D-BASIS-ME. Placing the isolators at the top of the shaft in elevated tanks proved to be much better than placing them at the bottom.

Parametric Analysis and Design Engine for Tall Building Structures

  • Ho, Goman;Liu, Peng;Liu, Michael
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.1
    • /
    • pp.53-59
    • /
    • 2012
  • With the rise in CPU power and the generalization and popularity of computers, engineering practice also changed from hand calculations to 3D computer models, from elastic linear analysis to 3D nonlinear static analysis and 3D nonlinear transient dynamic analysis. Thanks to holistic design approach and current trends in freeform and contemporary architecture, BIM concept is no longer a dream but also a reality. BIM is not just providing a media for better co-ordination but also to shorten the round-the-clock time in updating models to match with other professional disciplines. With the parametric modeling tools, structural information is also linked with BIM system and quickly produces analysis and design results from checking to fabrication. This paper presents a new framework which not just linked the BIM system by means of parametric mean but also create and produce connection FE model and fabrication drawings etc. This framework will facilitate structural engineers to produce well co-ordinate, optimized and safe structures.

Development of an Hull Structural CAD System based on the Data Structure and Modeling Function for the Initial Design Stage (초기 설계를 위한 자료 구조 및 모델링 함수 기반의 선체 구조 CAD 시스템 개발)

  • Roh, Myung-Il;Lee, Kyu-Yeul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.3 s.147
    • /
    • pp.362-374
    • /
    • 2006
  • Currently, all design information of a hull structure is being first defined on 2D drawings not 3D CAD model at the initial ship design stage and then transferred to following design stages through the 2D drawings. This is caused by the past design practice, limitation on time, and lack of hull structural CAD systems supporting the initial design stage. As a result, the following design tasks such as the process planning and scheduling are being manually performed using the 2D drawings. For solving this problem, a data structure supporting the initial design stage is proposed and a prototype system is developed based on the data structure. The applicability of the system is demonstrated by applying it to various examples. The results show that the system can be effectively used for generating the 3D CAD model of the hull structure at the initial design stage.

Application of Building Information Modeling for Steel Structures (강구조물 건설에서의 Building Information Modeling(BIM)의 도입)

  • Lee Suk-Joo;Cheon Jin-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.192-199
    • /
    • 2006
  • BIM is a collaborative. model-based way to work. Structural BIM is one of the key elements in the building process where the majority of structural information is created. Open BIM interfaces make it possible for all design information to be produced and managed within a single 3D product model. To make structural BIM a reality between owners, general contractors, architects and engineers. the software used need to be open in their communication. We used to Tekla Structures to provide an open environment through standard interfaces and Tekla Open API collaboration. We have developed MCP(machine cutting plan) and PIM(product information management)to provide cutting plan and drawing and manage to B.O.M, Materials, Production, Shipping and Project.

  • PDF

Equivalent Structural Modeling of Wind Turbine Rotor Blade (풍력발전기 로터 블레이드의 등가 구조모델 수립)

  • Park, Young-Geun;Hwang, Jai-Hyuk;Kim, Seok-Woo;Jang, Moon-Seok;Bae, Jae-Sung
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.4
    • /
    • pp.11-16
    • /
    • 2006
  • The wind turbine rotor blade is faced with various aeroelastic problem as rotor blades become bigger and lighter by the use the composite material. The aeroelastic analysis of a wind turbine rotor blade requires its aerodynamic model and structural model. For effective aeroelastic analysis, it is required the simple and effective structural model of the blade. In the present study, we introduce the effective equivalent structural modeling of the blade for aeroelastic analysis. The equivalent beam model of the composite blade based on its 3D finite element model is established. The free vibration analysis shows that the equivalent beam model of the blade is equivalent to its 3D finite element model.

  • PDF