• Title/Summary/Keyword: 3D Printing shield

Search Result 16, Processing Time 0.029 seconds

Feasibility of the 3D Printing Materials for Radiation Dose Reduction in Interventional Radiology (인터벤션 시술 시 환자의 선량감소를 위한 3D 프린팅 재료의 적용성 평가)

  • Cho, Yong-In
    • Journal of radiological science and technology
    • /
    • v.43 no.3
    • /
    • pp.169-176
    • /
    • 2020
  • Interventional radiology is performed under real-time fluoroscopy, and patients are exposed to a wide range of exposures for a long period of time depending on the examination and procedure. However, studies on radiation protection for patients during an intervention are insufficient. This study aims to evaluate the doses exposed during the intervention and the applicability of 3D printing materials. The organ dose for each intervention site was evaluated using a monte carlo simulatio. Also, the dose reduction effect of the critical organs was calculated when using a shielding device using 3D printing materials. As a result, the organ dose distribution for each intervention site showed a lower dose distribution for organs located far from the x-ray tube. It was analyzed that the influence of scattered rays was higher in the superficial organs of the back of the human body where x-rays were incident. The dose reduction effect on the critical organ using the 3D printing shield showed the highest testis among the gonads, and in the case of other organs, the dose reduction effect gradually decreased in the order of the eye, thyroid, breast, and ovary. Accordingly, it is judged that the 3D printed shield will be sufficiently usable as a shielding device for the radiation protection of critical organs.

Evaluation of the Effectiveness of the Shielding Device and the Organ Dose of Subject During Bone Mineral Density (골밀도검사에서 피검자의 장기선량 측정 및 차폐기구의 효용성 평가)

  • Cho, Yong-In;Kim, Jung-Hoon
    • Journal of radiological science and technology
    • /
    • v.43 no.3
    • /
    • pp.187-194
    • /
    • 2020
  • Bone mineral density is a examination to measure the amount of bone in patients with metabolic bone disease. It is a low dose, but may cause unnecessary exposure to the gonads and other organs located in the periphery when examining the lumbar and proximal femurs. Therefore, the purpose of this study was to evaluated the exposure dose for each organ exposed during the bone mineral density through simulation, and analyzed the applicability of the subject to radiation shielding devices using 3D printing materials. As a result, the highest dose was shown at 11.47 uSv in the breast during lumbar examination and 8.98 uSv in the testis during proximal femur examination. Also, the farther away from the examination site, the lower the effect of the scattering-ray. The shielding effect of using 3D printing shielding device showed high results in proportion to the effective atomic number and specific gravity of the printing material. Among the printing materials, ABS + W showed an effect of at least 78.72 to 96.3 9% compared to the existing lead material.

A Study on the Shielding of Orbit by 3D Printed Filament in Brain CT (Brain CT검사 시 3D프린터 필라멘트에 따른 수정체 차폐 연구)

  • Choi, Woo Jeon;Kim, Dong Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.101-108
    • /
    • 2021
  • The CT can accurately present the anatomical structure of an organ in the human body, and the resolution of the image is excellent. On Brain CT examination, the radiation sensitivity of the orbit is high and it is subject to many exposure effects. To reduce exposure dose of lens, this study compares change of exposure dose and shielding rate about non-shielding and shielding in a way of using two shielding materials, bismuth and tungsten. In this study, we used bismuth and tungsten filament as shielding materials made by 3D printing to measure the exposure dose according to the materials thickness and each of slices. To compare each shielding rate, 1 mm to 5 mm of two materials was measured with the head phantom fixed and the Magicmax universal dosimeter placed on the eye when the shielding material is not placed, and the shielding material is placed on it. In the 1 mm thick filament, the bismuth filament showed 26.8% and the tungsten filament showed 43.1% shielding rate. Therefore, tungsten presents much greater shielding effect than bismuth.

Usefulness Evaluation and Fabrication of the Radiation Shield Using 3D Printing Technology (3차원 프린팅 기술을 이용한 차폐체 제작 및 유용성 평가)

  • Jang, Hui-Min;Yoon, Joon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.7
    • /
    • pp.1015-1024
    • /
    • 2019
  • In the medical field, X-rays are essential in the diagnosis and treatment of diseases, and the use of X-rays continues to increase with the development of imaging technology, but X-rays have the disadvantage of radiation exposure. Although lead protection tools are used in clinical practice to protect against radiation exposure, lead is classified as a heavy metal and can cause harmful reactions such as lead poisoning. Therefore, the purpose of this study is to investigate the usefulness of the shield fabricated using materials of FDM (Fused Deposition Modeling) 3D printer. In order to confirm the filament's line attenuation factor, phantoms were fabricated using PLA, XT-CF20, Wood, Glow and Brass, and CT scan was performed. And the shielding sheet of 100 × 100 × 2 mm size was modeled, the dose and shielding rate was measured by using a diagnostic X-ray generator and irradiation dose meter, and the shielding rate with lead protection tools. As a result of the experiment, the CT number of the brass was measured to be the highest, and the shielding sheet was manufactured by using the brass. As a result of confirming with the diagnostic X-ray generator, the shielding rate was increased in the shielding sheet having a thickness of 6 mm upon X-ray irradiation under the condition of 100 kV and 40 mAs. It measured by 90% or more, and confirmed that the shielding rate is higher than apron 0.25 mmPb. As a result of this study, it was confirmed that the shield fabricated by 3D printing technology showed high shielding rate in the diagnostic X-ray region. there was.

Evaluation of the Effectiveness of 3D Printing Shielding Devices using Monte Carlo Simulation in Plain Radiography (일반영상 검사 시 몬테칼로 시뮬레이션을 이용한 3D 프린팅 차폐기구의 효용성 평가)

  • Cho, Yong In;Kim, Jung Hoon
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.3
    • /
    • pp.303-311
    • /
    • 2020
  • Scattering-ray generated during plain radiography can cause secondary exposure to organs and tissues other than the target area. Currently, Shielding devices used to reduce radiation exposure are mostly used for radiation protection of workers, and radiation protection of patients is rarely performed. Therefore, this study intends to evaluate the organ dose by scattered-rays and the effectiveness 3D printing materials as a radiation shielding device during plain radiography through simulation. As a result, the absorbed dose for each organ at the time of examination showed a high effect due to the secondary scattering-ray as the distance from the source was close and the organ closer to the skin surface. The dose reduction effect due to the use of 3D printing shielding devices to protect this showed a higher shielding effect in the case of mixed printing materials compared to plastics.

Assessment of Radiation Shielding Ability of Printing Materials Using 3D Printing Technology: FDM 3D Printing Technology (3D 프린팅 기술을 이용한 원료에 대한 방사선 차폐능 평가: FDM 방식의 3D 프린팅 기술을 중심으로)

  • Lee, Hongyeon;Kim, Donghyun
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.7
    • /
    • pp.909-917
    • /
    • 2018
  • 3D printing technology is expected to be an innovative technology of the manufacturing industry during the 4th industrial revolution, and it is being used in various fields including biotechnology and medical field. In this study, we verified the printing materials through Monte Carlo simulation to evaluate the radiation shielding ability of the raw material using this 3D printing technology. In this paper, the printing materials were selected from the raw materials available in a general-purpose FDM-based 3D printer. Simulation of the ICRU phantom and the shielding system was carried out to evaluate the shielding effect by evaluating the particle fluence according to the type and energy of radiation. As a result, the shielding effect tended to decrease gradually with increasing energy in the case of photon beam, and the shielding effect of TPU, PLA, PVA, Nylon and ABS gradually decreased in order of materials. In the case of the neutron beam, the neutron intensity increases at a low thickness of 5 ~ 10 mm. However, the effective shielding effect is shown above a certain thickness. The shielding effect of printing material is gradually increased in the order of Nylon, PVA, ABS, PLA and TPU Respectively.

Verification of Shielding Materials for Customized Block on Metal 3D Printing (금속 3D 프린팅을 통한 맞춤형 차폐블록 제작에 사용되는 차폐 재료 검증)

  • Kyung-Hwan, Jung;Dong-Hee, Han;Jang-Oh, Kim;Hyun-Joon, Choi;Cheol-Ha, Baek
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.25-30
    • /
    • 2023
  • As 3D printing technology is used in the medical field, interest in metal materials is increasing. The Department of Radiation Oncology uses a shielding block to shield the patient's normal tissue from unnecessary exposure during electron beam therapy. However, problems such as handling of heavy metal materials such as lead and cadmium, reproducibility according to skill level and uncertainty of arrangement have been reported. In this study, candidate materials that can be used for metal 3D printing are selected, and the physical properties and radiation dose of each material are analyzed to develop a customized shielding block that can be used in electron beam therapy. As candidate materials, aluminum alloy (d = 2.68 g/cm3), titanium alloy (d = 4.42 g/cm3), and cobalt chromium alloy (d = 8.3 g/cm3) were selected. The thickness of the 95% shielding rate point was derived using the Monte Carlo Simulation with the irradiation surface and 6, 9, 12, and 16 energies. As a result of the simulation, among the metal 3D printing materials, cobalt chromium alloy (d = 8.3 g/cm3) was similar to the existing shielding block (d = 9.4 g/cm3) in shielding thickness for each energy. In a follow-on study, it is necessary to evaluate the usefulness in clinical practice using customized shielding blocks made by metal 3D printing and to verify experiments through various radiation treatment plan conditions.

Preliminary Research on the Implementation of Information of Human Facial Part Required for the 3D Printing of Eye Shield (안구차폐체 제작에 필요한 안면부 3차원 정보 구현의 기초연구)

  • Choi, Seokyoon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.7
    • /
    • pp.955-960
    • /
    • 2019
  • The Computed tomography (CT) scan can have high radiation in a few tests, and this risk is significant given that it is often repeated in one patient. In children, the incidence of radiation-induced cancer is reported because organs are growing, are more sensitive to radiation. 3D printing has recently been studied to be applied to various applications as a research field for 3D printing applications, research on fabrication of radiation shields and materials has been conducted. The purpose of the 3D printer is to replace the existing panel-type shields and to make customized designs according to the shape of the human body. Therefore, research on 3D information processing to be input to the 3D printer is also necessary. In this study, 3D data of the human body surface, which is the preliminary step of the manufacture of patient-specific eye shield using stereo vision depth map technology, was studied. This study aims to increase the possibility of three-dimensional output. As a result of experimenting with this method, which is relatively simple compared with other methods of 3D information processing, the minimum coordinates for 3D information are extracted. The results of this study provided the advantages and limitations of stereo images using natural light and will be the basic data for the manufacture of eye shields in the future.

Evaluation of Shielding Performance of 3D Printer Materials for High-energy Electron Radiation Therapy (고 에너지 전자선 치료를 위한 3D 프린터 물질의 차폐 성능평가)

  • Chang-Woo, Oh;Sang-Il, Bae;Young-Min, Moon;Hyun-Kyoung, Yang
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.6
    • /
    • pp.687-695
    • /
    • 2022
  • To find a 3D printer material that can replace lead used as a shield for high-energy electron beam treatment, the shielding composites were simulated by using MCNP6 programs. The Percent Depth Dose (PDD), Flatness, and Symmetry of linear accelerators emitting high-energy electron beams were measured, and the linear accelerator was compared with MCNP6 after simulation, confirming that the source term between the actual measurement and simulation was consistent. By simulating the lead shield, the appropriate thickness of the lead shield capable of shielding 95% or more of the absorbed dose was selected. Based on the absorption dose data for lead shield with a thickness of 3 mm, the shielding performance was analyzed by simulating 1, 5, 10, and 15 mm thicknesses of ABS+W (10%), ABS+Bi (10%), and PLA+Fe (10%). Each prototype was manufactured with a 3D printer, measured and analyzed under the same conditions as in the simulation, and found that when ABS+W (10%) material was formed to have a thickness of at least 10mm, it had a shielding performance that could replace lead with a thickness of 3mm. The surface morphology and atomic composition of the ABS+W (10%) material were evaluated using a scanning electron microscope (SEM) and an energy dispersive X-ray spectrometer (EDS). From these results, it was confirmed that replacing the commercialized lead shield with ABS+W (10%) material not only produces a shielding effect such as lead, but also can be customized to patients using a 3D printer, which can be very useful for high-energy electron beam treatment.

Evaluation of the Usefulness of 3D Printed Shielding Materials Using Monte Carlo Simulation during Mammography (유방 X선 검사 시 몬테카를로 시뮬레이션을 이용한 3D 프린팅 차폐재료의 효용성 평가)

  • Cho, Yong In
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.3
    • /
    • pp.295-301
    • /
    • 2020
  • Radiation exposure exposed during mammography, which is performed for early examination of breast cancer, has also been suggested as a cause of carcinogenesis in the past, and scattered rays generated during examination may cause unnecessary radiation exposure to surrounding organs. In this study, the Monte Carlo simulation was used to evaluate the human organ doses exposed during conventional mammography, and to estimate the dose reduction effect for each organ when using 3D printing materials for radiation protection by scattered rays. As a result of organ dose evaluation, the breast on the opposite side of the examination was about 22.0% of the breast on the test side and about 58.6% on the eye, which was highly influenced by the scattering-ray. When using the 3D printing shield to protect it, the breast on the opposite side of the test showed an effective dose reduction effect at a thickness of 1 mm.