• Title/Summary/Keyword: 3D Position Tracking

Search Result 155, Processing Time 0.023 seconds

Maneuvering Target Tracking With 3D Variable Turn Model and Kinematic Constraint (3D 가변 선회 모델 및 기구학적 구속조건을 사용한 기동표적 추적)

  • Kim, Lamsu;Lee, Dongwoo;Bang, Hyochoong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.11
    • /
    • pp.881-888
    • /
    • 2020
  • In this paper, research on estimation of states of a target of interest using Line Of Sight(LOS) angle measurement is performed. Target's position, velocity, and acceleration are chosen to be the states of interests. The LOS measurement is known to be highly non-linear, making target dynamic modeling hard to be implemented into a filter. To solve this issue, the Pseudomeasurement equation was applied to the LOS measurement equation. With the help of this equation, 3D variable turn target dynamic model is applied to the filter model. For better performance, Kinematic Constraint is also implemented into the filter model. As for the filter, Bias Compensation Pseudomeasurement Filter (BCPMF) is used which is known for its robustness to initial conditions. Moreover, Two-Stage Kalman Filter (TSKF) form was also implemented to benefit from the parallel computation. As a result, TBCPMF 3DVT-KC is proposed and simulated to assess performance.

Performance Evaluation of ARCore Anchors According to Camera Tracking

  • Shinhyup Lee;Leehwan Hwang;Seunghyun Lee;Taewook Kim;Soonchul Kwon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.215-222
    • /
    • 2023
  • Augmented reality (AR), which integrates virtual media into reality, is increasingly utilized across various industrial sectors, thanks to advancements in 3D graphics and mobile device technologies. The IT industry is thus carrying out active R&D activities about AR platforms. Google plays a significant role in the AR landscape, with a focus on ARCore services. An essential aspect of ARCore is the use of anchors, which serve as reference points that help maintain the position and orientation of virtual objects within the physical environment. However, if the accuracy of anchor positioning is suboptimal when running AR content, it can significantly diminish the user's immersive experience. We are to assess the performance of these anchors in this study. To conduct the performance evaluation, virtual 3D objects, matching the shape and size of real-world objects, we strategically positioned ourselves to overlap with their physical counterparts. Images of both real and virtual objects were captured from five distinct camera trajectories, and ARCore's performance was analyzed by examining the difference between these captured images.

Improved Motion-Recognizing Remote Controller for Realistic Contents (실감형 컨텐츠를 위한 향상된 동작 인식 리모트 컨트롤러)

  • Park, Gun-Hyuk;Kim, Sang-Ki;Yim, Sung-Hoon;Han, Gab-Jong;Choi, Seung-Moon;Choi, Seung-Jin;Eoh, Hong-Jun;Cho, Sun-Young
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.396-401
    • /
    • 2009
  • This paper describes the improvements made on hardware and software of the remote controller for realistic contents. The controller can provide vibrotactile feedback which uses both of a voice-coil actuator and a vibration motor. A vision tracking system for the 3D position of the controller is optimized with respect to the marker size and the camera parameters. We also present the improvements of motion recognition due to the effective motion segmentation and the fusion of vision and acceleration data. We apply the developed controller to realistic contents and validate its usability.

  • PDF

Real-Time Quad-Copter Tracking With Multi-Cameras and Ray-based Importance Sampling (복수카메라 및 Ray-based Importance Sampling을 이용한 실시간 비행체 추적)

  • Jin, Longhai;Jeong, Mun-Ho;Lee, Key-Seo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.6
    • /
    • pp.899-905
    • /
    • 2013
  • In this paper, we focus on how to calibrate multi-cameras easily and how to efficiently detect quad-copters with small-numbered particles. Each particle is a six dimensional vector that is composed of 3D position and 3D orientation of a quad-copter in the space. Due to curse of dimensionality, that leads to explosive computational costs with a large amount of high-dimensioned particles. To detect efficiently, we need to put more particles in very promising spaces and few particles in other spaces. Though computational cost is lowered by minimizing particles, in order to track a quad-copter with multiple cameras in real-time, multiple images from the cameras should be synchronized and analyzed. Therefore, lots of the computations still need to be done. Because of this, GPGPU(General-Purpose computing on Graphics Processing Units) is implemented for parallel computing. This method has been successfully tested and gives accurate results in practical situations.

Ranging Performance for Spoofer Localization using Receiver Clock Offset

  • Lee, Byung-Hyun;Seo, Seong-Hun;Jee, Gyu-In;Yeom, Dong-Jin
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.3
    • /
    • pp.137-144
    • /
    • 2016
  • In this paper, the performance of ranging measurement, which is generated using two receiver clock offsets in one receiver, was analyzed. A spoofer transmits a counterfeited spoofing signal which is similar to the GPS signal with hostile purposes, so the same tracking technique can be applied to the spoofing signal. The multi-correlator can generate two receiver clock offsets in one receiver. The difference between these two clock offsets consists of the path length from the spoofer to the receiver and the delay of spoofer system. Thus, in this paper, the ranging measurement was evaluated by the spoofer localization performance based on the time-of-arrival (TOA) technique. The results of simulation and real-world experiments show that the position and the system clock offset of the spoofer could be estimated successfully.

Multiple Camera-Based Correspondence of Ground Foot for Human Motion Tracking (사람의 움직임 추적을 위한 다중 카메라 기반의 지면 위 발의 대응)

  • Seo, Dong-Wook;Chae, Hyun-Uk;Jo, Kang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.848-855
    • /
    • 2008
  • In this paper, we describe correspondence among multiple images taken by multiple cameras. The correspondence among multiple views is an interesting problem which often appears in the application like visual surveillance or gesture recognition system. We use the principal axis and the ground plane homography to estimate foot of human. The principal axis belongs to the subtracted silhouette-based region of human using subtraction of the predetermined multiple background models with current image which includes moving person. For the calculation of the ground plane homography, we use landmarks on the ground plane in 3D space. Thus the ground plane homography means the relation of two common points in different views. In the normal human being, the foot of human has an exactly same position in the 3D space and we represent it to the intersection in this paper. The intersection occurs when the principal axis in an image crosses to the transformed ground plane from other image. However the positions of the intersection are different depend on camera views. Therefore we construct the correspondence that means the relationship between the intersection in current image and the transformed intersection from other image by homography. Those correspondences should confirm within a short distance measuring in the top viewed plane. Thus, we track a person by these corresponding points on the ground plane. Experimental result shows the accuracy of the proposed algorithm has almost 90% of detecting person for tracking based on correspondence of intersections.

A study on the effect of introducing EBS AR production system on content (EBS AR 실감영상 제작 시스템 도입이 콘텐츠에 끼친 영향에 대한 연구)

  • Kim, Ho-sik;Kwon, Soon-chul;Lee, Seung-hyun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.711-719
    • /
    • 2021
  • EBS has been producing numerous educational contents with traditional virtual studio production systems since the early 2000s and applied AR video production system in October 2020, twenty-years after. Although the basic concept of synthesizing graphic elements and actual image in real time by tracking camera movement and lens information is similar to the previous one but the newly applied AR video production system contains some of advanced technologies that are improved over the previous ones. Marker tracking technology that enables camera movement free and position tracking has been applied that can track the location stably, and the operating software has been applied with Unreal Engine, one of the representative graphic engines used in computer game production, therefore the system's rendering burden has been reduced, enabling high-quality and real-time graphic effects. This system is installed on a crane camera that is mainly used in a crane shot at the live broadcasting studio and applied for live broadcasting programs for children and some of the videos such as program introductions and quiz events that used to be expressed in 2D graphics were converted to 3D AR videos which has been enhanced. This paper covers the effect of introduction and application of the AR video production system on EBS content production and the future development direction and possibility.

Seamless Viewing Control by User Movement Between Pyramid Sections in Desktop 3D Hologram Pyramid (데스크톱 3D 홀로그램 피라미드에서 피라미드 단면 사이 사용자 이동에 따른 끊김 없는(seamless viewing control) 뷰 생성)

  • Hwang, Sun-Ju;Nam, Yang-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.3
    • /
    • pp.1-9
    • /
    • 2021
  • The hologram pyramid is an application of floating holograms, allowing the observer to see three-dimensional holograms from various angles without wearing wearable devices. Due to the low cost and ease of manufacturing, it has been used in a wide variety of fields as diverse as education, prototyping, showcase, and etc. But, when the observer looks at the hologram from the place where each side of the hologram pyramid is connected, the hologram looks cut and distorted. Also, the observer can see the only hologram of angles viewed head-on from each side. In this paper, we propose a method of generating a hologram image corresponding to the observer's gaze angle by tracking the observer's position and conducting reverse distortion. It provide a hologram of the angle viewed by the observer without cutting and distortion. In addition, the existing method and the proposed method were applied and compared in the hologram pyramid.

Position control of the frictionless positioning device suspended by cone-shaped active magnetic bearings (원추형 자기 베어링 지지 무마찰 구동장치의 위치제어)

  • Jeong, Ho-Seop;Lee, Chong-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.3
    • /
    • pp.181-187
    • /
    • 1996
  • A frictionless positioning device using cone-shaped active magnetic bearings(AMBs) is developed, which is driven by a brushless DC motor equipped with resolver. The cone-shaped AMB feature that the structure is simple and yet the five d.o.f. rotor motion is controlled by four magnet pairs. A linearized dynamic model, which accounts for the relationship between input voltage and output current in the cone-shaped magnet, is developed and the azimuth motion of the frictionless positioning device is modeled as the second order system. The feedback controller is designed by using linear quadratic regulator with integral action optimal control law so that the cone-shaped AMB system is stabilized and the frictionless positioning device gets the zero steady state. It is observed that the linearized dynamic model is adequate and the frictionless positioning device can achieve the tracking accuracy within the sensor resolution.

  • PDF

Comparison of Control Performance in Electro.hydraulic Servo Systems (전기.유압 서보 시스템의 제어성능 비교)

  • Kim, D.T.;Park, K.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.3 no.2
    • /
    • pp.14-20
    • /
    • 2006
  • A controller design procedure for an electro-hydraulic positioning systems has been developed using $H{\infty}$ control. The generalized plant models and weighting function for multiplicative uncertainty modelling error was presented along with $H{\infty}$ controller designs in order to investigate the robust stability and performance. Both disturbance rejection and command tracking performances were improved with the $H{\infty}$ controller, and the better uniformity of time response is achieved across wide range of operating conditions than the PID, LQR and LQG control scheme. The multiplicative uncertainty case was specifically suited for the design of an electro-hydraulic positioning control systems using $H{\infty}$ control.

  • PDF