• Title/Summary/Keyword: 3D PointCloud

Search Result 396, Processing Time 0.022 seconds

MPEG G-PCC 국제표준 기술

  • Byeon, Ju-Hyeong;Choe, Han-Sol;Sim, Dong-Gyu
    • Broadcasting and Media Magazine
    • /
    • v.26 no.2
    • /
    • pp.31-45
    • /
    • 2021
  • 본 고는 ISO/IEC JTC 1/SC 29/WG 7 MPEG(Moving Picture Experts Group) 3DG(3D Graphics coding) 그룹에서 진행되고 있는 포인트 클라우드 데이터 압축 표준 기술 중 하나인 G-PCC(Geometry-based Point Cloud Compression) 표준에 대하여 설명하고자 한다. G-PCC는 포인트 클라우드의 기하 정보와 속성 정보를 3차원 공간에서 서로 다른 기술을 이용하여 압축하는 표준으로, 무손실 압축 방법의 경우 10:1의 압축율을 제공하고 손실 압축의 경우 35:1 정도의 압축율을 보인다. 본 고에서는 G-PCC의 기하 정보와 속성 정보의 압축 방법을 상세히 설명하고 같은 기능을 수행하는 압축 기술 간의 성능을 비교하고자 한다.

Featured-Based Registration of Terrestrial Laser Scans with Minimum Overlap Using Photogrammetric Data

  • Renaudin, Erwan;Habib, Ayman;Kersting, Ana Paula
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.517-527
    • /
    • 2011
  • Currently, there is a considerable interest in 3D object reconstruction using terrestrial laser scanner (TLS) systems due to their ability to automatically generate a considerable amount of points in a very short time. To fully map an object, multiple scans are captured. The different scans need to be registered with the help of the point cloud in the overlap regions. To guarantee reliable registration, the scans should have large overlap ratio with good geometry for the estimation of the transformation parameters among these scans. The objective of this paper is to propose a registration method that relaxes/eliminates the overlap requirement through the utilization of photogrammetrically reconstructed features. More specifically, a point-based procedure, which utilizes non-conjugate points along corresponding linear features from photogrammetric and TLS data, will be used for the registration. The non-correspondence of the selected points along the linear features is compensated for by artificially modifying their weight matrices. The paper presents experimental results from simulated and real datasets to illustrate the feasibility of the proposed procedure.

The Road Traffic Sign Recognition and Automatic Positioning for Road Facility Management (도로시설물 관리를 위한 교통안전표지 인식 및 자동위치 취득 방법 연구)

  • Lee, Jun Seok;Yun, Duk Geun
    • International Journal of Highway Engineering
    • /
    • v.15 no.1
    • /
    • pp.155-161
    • /
    • 2013
  • PURPOSES: This study is to develop a road traffic sign recognition and automatic positioning for road facility management. METHODS: In this study, we installed the GPS, IMU, DMI, camera, laser sensor on the van and surveyed the car position, fore-sight image, point cloud of traffic signs. To insert automatic position of traffic sign, the automatic traffic sign recognition S/W developed and it can log the traffic sign type and approximate position, this study suggests a methodology to transform the laser point-cloud to the map coordinate system with the 3D axis rotation algorithm. RESULTS: Result show that on a clear day, traffic sign recognition ratio is 92.98%, and on cloudy day recognition ratio is 80.58%. To insert exact traffic sign position. This study examined the point difference with the road surveying results. The result RMSE is 0.227m and average is 1.51m which is the GPS positioning error. Including these error we can insert the traffic sign position within 1.51m CONCLUSIONS: As a result of this study, we can automatically survey the traffic sign type, position data of the traffic sign position error and analysis the road safety, speed limit consistency, which can be used in traffic sign DB.

An application of MMS in precise inspection for safety and diagnosis of road tunnel (도로터널에서 MMS를 이용한 정밀안전진단 적용 사례)

  • Jinho Choo;Sejun Park;Dong-Seok Kim;Eun-Chul Noh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.2
    • /
    • pp.113-128
    • /
    • 2024
  • Items of road tunnel PISD (Precise Inspection for Safety and Diagnosis) were reviewed and analyzed using newly enhanced MMS (Mobile Mapping System) technology. Possible items with MMS can be visual inspection, survey and non-destructive test, structural analysis, and maintenance plan. The resolution of 3D point cloud decreased when the vehicle speed of MMS is too fast while the calibration error increased when it is too slow. The speed measurement of 50 km/h is determined to be effective in this study. Although image resolution by MMS has a limit to evaluating the width of crack with high precision, it can be used as data to identify the status of facilities in the tunnel and determine whether they meet disaster prevention management code of tunnel. 3D point cloud with MMS can be applicable for matching of cross-section and also possible for the variation of longitudinal survey, which can intuitively check vehicle clearance throughout the road tunnel. Compared with the measurement of current PISD, number of test and location of survey is randomly sampled, the continuous measurement with MMS for environment condition can be effective and meaningful for precise estimation in various analysis.

Unsupervised Monocular Depth Estimation Using Self-Attention for Autonomous Driving (자율주행을 위한 Self-Attention 기반 비지도 단안 카메라 영상 깊이 추정)

  • Seung-Jun Hwang;Sung-Jun Park;Joong-Hwan Baek
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.2
    • /
    • pp.182-189
    • /
    • 2023
  • Depth estimation is a key technology in 3D map generation for autonomous driving of vehicles, robots, and drones. The existing sensor-based method has high accuracy but is expensive and has low resolution, while the camera-based method is more affordable with higher resolution. In this study, we propose self-attention-based unsupervised monocular depth estimation for UAV camera system. Self-Attention operation is applied to the network to improve the global feature extraction performance. In addition, we reduce the weight size of the self-attention operation for a low computational amount. The estimated depth and camera pose are transformed into point cloud. The point cloud is mapped into 3D map using the occupancy grid of Octree structure. The proposed network is evaluated using synthesized images and depth sequences from the Mid-Air dataset. Our network demonstrates a 7.69% reduction in error compared to prior studies.

Shrink-Wrapped Boundary Face Algorithm for Mesh Reconstruction from Unorganized Points

  • Koo, Bon-Ki;Choi, Young-Kyu;Chu, Chang-Woo;Kim, Jae-Chul;Choi, Byoung-Tae
    • ETRI Journal
    • /
    • v.27 no.2
    • /
    • pp.235-238
    • /
    • 2005
  • A new mesh reconstruction scheme for approximating a surface from a set of unorganized 3D points is proposed. The proposed method, called a shrink-wrapped boundary face (SWBF) algorithm, produces the final surface by iteratively shrinking the initial mesh generated from the definition of the boundary faces. SWBF surmounts the genus-0 spherical topology restriction of previous shrink-wrapping-based mesh generation techniques and can be applied to any type of surface topology. Furthermore, SWBF is significantly faster than a related algorithm of Jeong and others, as SWBF requires only a local nearest-point-search in the shrinking process. Our experiments show that SWBF is very robust and efficient for surface reconstruction from an unorganized point cloud.

  • PDF

Skeleton extraction technique for producing 3D point cloud-based dynamic 3D model (3차원 포인트 클라우드 기반의 동적 3D 모델 생성을 위한 뼈대 추출 기술)

  • Park, Byung-Seo;Kim, Kyung-Jin;Seo, Young-Ho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.06a
    • /
    • pp.234-235
    • /
    • 2019
  • 본 논문은 실사 객체를 360도 전방위에서 관찰이 가능한 3D 그래픽 모델로 변환하는 시스템에서 뼈대를 추출하는 방법을 제시한다. 각 카메라로부터 촬영된 텍스쳐 영상을 이용하여 뼈대를 추출하고, 깊이 정보로부터 얻어진 포인트 클라우드 정보를 이용하여 뼈대 정보를 정합, 보정하는 과정을 수행한다. 카메라로부터 촬영된 텍스쳐 영상에 대해 딥러닝 기술 등을 이용하여 뼈대를 획득한다. 텍스쳐 영상으로부터 획득된 뼈대 정보는 동일 위치에서 획득된 외부 파라미터를 이용하여 월드좌표계로 변환하여 공간상에 위치시킨다. 이러한 과정을 모든 카메라로부터 획득된 뼈대 정보에 동일하게 적용함으로써 모든 뼈대 정보를 공간상에 표현하여 최종적인 뼈대 정보를 추출하는 방법을 제시한다.

  • PDF

Definition of 3D Modeling Level of Detail in BIM Regeneration Through Reverse Engineering - Case Study on 3D Modeling Using Terrestrial LiDAR - (역설계를 통해 BIM 구축시에 3D 모델링에 대한 세밀도(LoD) 정립 - 지상 LiDAR 활용한 3D 모델링 연구 중심 -)

  • Chae, Jae-Hyun;Lee, Ji-Yeong
    • Journal of KIBIM
    • /
    • v.7 no.4
    • /
    • pp.8-20
    • /
    • 2017
  • When it comes to set up the BIM through the reverse engineering, the level of detail(LoD) required for finalized outcomes is different from each purpose. Therefore, it is necessary to establish some concrete criteria which describe the definition of LoDs on 3D modeling for the purpose of each reverse engineering. This research shows the criteria of the 1) positional accuracy, 2) generalization level, 3) scale level, 4) scope of description, and 5) the area available for application by classifying LoD from 1 to 6 on 3D modeling for each purpose of reverse engineering. Moreover, through applying those criteria for the 3D point cloud dataset of building made by terrestrial LiDAR, this research finds out the working hour of 3D modeling of reverse engineering by each LoDs according to defined LoD criteria for each level. It is expected that those findings, how those criteria of LoD on reverse engineering are utilized for modeling-workers to decide whether the outcomes can be suitable for their budget, applicable fields or not, would contribute to help them as a basic information.

A Study of Data Structure for Efficient Storing of 3D Point Cloud Data (3차원 점군자료의 효율적 저장을 위한 자료구조 연구)

  • Jang, Young-Woon;Cho, Gi-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.113-118
    • /
    • 2010
  • Recently, 3D-reconstruction for geographic information and study of geospatial information is progressing in various fields through national policy such as R&D business and pilot project. LiDAR system has a advantage of acquisition the 3D information data easily and densely so that is used in many different fields. Considering to characterist of the point data formed with 3D, it need a high specification CPU because it requires a number of processing operation for 2D form expressed by monitor. In contrast, 2D grid structure, like DEM, has a advantage on costs because of simple structure and processing speed. Therefore, purpose of this study is to solve the problem of requirement of more storage space, when LiDAR data stored in forms of 3D is used for 3D-geographic and 3D-buliding representation. Additionally, This study reconstitutes 2D-gird data to supply the representation data of 3D-geographic and presents the storage method which is available for detailed representation applying tree-structure and reduces the storage space.

Reconfiguration of Physical Structure of Vegetation by Voxelization Based on 3D Point Clouds (3차원 포인트 클라우드 기반 복셀화에 의한 식생의 물리적 구조 재구현)

  • Ahn, Myeonghui;Jang, Eun-kyung;Bae, Inhyeok;Ji, Un
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.571-581
    • /
    • 2020
  • Vegetation affects water level change and flow resistance in rivers and impacts waterway ecosystems as a whole. Therefore, it is important to have accurate information about the species, shape, and size of any river vegetation. However, it is not easy to collect full vegetation data on-site, so recent studies have attempted to obtain large amounts of vegetation data using terrestrial laser scanning (TLS). Also, due to the complex shape of vegetation, it is not easy to obtain accurate information about the canopy area, and there are limitations due to a complex range of variables. Therefore, the physical structure of vegetation was analyzed in this study by reconfiguring high-resolution point cloud data collected through 3-dimensional terrestrial laser scanning (3D TLS) in a voxel. Each physical structure was analyzed under three different conditions: a simple vegetation formation without leaves, a complete formation with leaves, and a patch-scale vegetation formation. In the raw data, the outlier and unnecessary data were filtered and removed by Statistical Outlier Removal (SOR), resulting in 17%, 26%, and 25% of data being removed, respectively. Also, vegetation volume by voxel size was reconfigured from post-processed point clouds and compared with vegetation volume; the analysis showed that the margin of error was 8%, 25%, and 63% for each condition, respectively. The larger the size of the target sample, the larger the error. The vegetation surface looked visually similar when resizing the voxel; however, the volume of the entire vegetation was susceptible to error.