• Title/Summary/Keyword: 3D Object Simplification

Search Result 10, Processing Time 0.009 seconds

3D Object Simplification for Google Earth Uploading of the Cultural Resources and Tourist Attractions (문화.관광 자원의 구글어스 Uploading을 위한 3D 객체 단순화)

  • Youn, Jae-Hong;Choi, Hyo-Seung;Jeong, Seung-Moon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.4
    • /
    • pp.45-51
    • /
    • 2009
  • Different countries around the world, using their traditional culture as a background, are promoting new changes and reformation in development and publicity method of cultural contents to promote national interests and to increase their competitiveness. Also, as the citizen's standard of living and quality of living goes up, various demands for the enjoyment of traditional culture goes up accordingly as well. As the cultural assets environment become more complicated and diverse, there is a need for systematic management and preservation plan. Keeping these viewpoints in mind, the geo-spatial information provision service using the web provides various forms of services such as satellite imagery, terrain, and 3D viewing, enabling the user to gain concrete spatial information on specific areas. The geo-spatial information using 3D modeling is done only in limited spaces because of construction expenses or difficulties in management and maintenance. In this thesis, I would like to propose Effective method for the GoogleEarth Uploading through simplification of 3D object for the publicity of traditional buildings and Cultural Resources and Tourist Attractions.

  • PDF

Automatic Generation of Analysis Model Using Multi-resolution Modeling Algorithm (다중해상도 알고리즘을 이용한 자동 해석모델 생성)

  • Kim M.C.;Lee K.W.;Kim S.C.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.3
    • /
    • pp.172-182
    • /
    • 2006
  • This paper presents a method to convert 3D CAD model to an appropriate analysis model using wrap-around, smooth-out and thinning operators that have been originally developed to realize the multi-resolution modeling. Wrap-around and smooth-out operators are used to simplify 3D model, and thinning operator is to reduce the dimension of a target object with simultaneously decomposing the simplified 3D model to 1D or 2D shapes. By using the simplification and dimension-reduction operations in an appropriate way, the user can generate an analysis model that matches specific applications. The advantage of this method is that the user can create optimized analysis models of various simplification levels by selecting appropriate number of detailed features and removing them.

Efficient 3D Object Simplification Algorithm Using 2D Planar Sampling and Wavelet Transform (2D 평면 표본화와 웨이브릿 변환을 이용한 효율적인 3차원 객체 간소화 알고리즘)

  • 장명호;이행석;한규필;박양우
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.5_6
    • /
    • pp.297-304
    • /
    • 2004
  • In this paper, a mesh simplification algorithm based on wavelet transform and 2D planar sampling is proposed for efficient handling of 3D objects in computer applications. Since 3D vertices are directly transformed with wavelets in conventional mesh compression and simplification algorithms, it is difficult to solve tiling optimization problems which reconnect vertices into faces in the synthesis stage highly demanding vertex connectivities. However, a 3D mesh is sampled onto 2D planes and 2D polygons on the planes are independently simplified in the proposed algorithm. Accordingly, the transform of 2D polygons is very tractable and their connection information Is replaced with a sequence of vertices. The vertex sequence of the 2D polygons on each plane is analyzed with wavelets and the transformed data are simplified by removing small wavelet coefficients which are not dominant in the subjective quality of its shape. Therefore, the proposed algorithm is able to change the mesh level-of-detail simply by controlling the distance of 2D sampling planes and the selective removal of wavelet coefficients. Experimental results show that the proposed algorithm is a simple and efficient simplification technique with less external distortion.

A Study on the Characteristics of Linear Smoothing Algorithm for Image-Based Object Detection of Water Friendly Facilities in River (영상 기반의 하천 친수시설 추출을 위한 선형 평활화 알고리즘 특성 연구)

  • Im, Yun Seong;Kim, Seo Jun;Kim, Chang Sung;Kim, Seong Jun
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.4
    • /
    • pp.266-272
    • /
    • 2021
  • Water friendly space refers to a place designated to plan and manage spaces for residents Water friendly activities. Efficient management of river Water friendly parks requires automated GIS data and DB construction of the water friendly facilities. Object-based classification using drone images or aerial images is attracting attention as an efficient means to acquire 3D spatial information in the country. To remove the miscellaneous image included in the extracted outline, a linear simplification of the outline is required, and it is difficult to apply manually, so various automation methods have been developed to overcome this, and among them, the most widely studied and utilized is the linear simplification method. In this study, the suitability of linear simplification algorithms such as Douglas-Peucker, Visvalingam-Whyatt, and Bend-simplify algorithms for the geometric shape of hydrophilic facilities was determined.

2D/3D image Conversion Method using Simplification of Level and Reduction of Noise for Optical Flow and Information of Edge (Optical flow의 레벨 간소화 및 노이즈 제거와 에지 정보를 이용한 2D/3D 변환 기법)

  • Han, Hyeon-Ho;Lee, Gang-Seong;Lee, Sang-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.827-833
    • /
    • 2012
  • In this paper, we propose an improved optical flow algorithm which reduces computational complexity as well as noise level. This algorithm reduces computational time by applying level simplification technique and removes noise by using eigenvectors of objects. Optical flow is one of the accurate algorithms used to generate depth information from two image frames using the vectors which track the motions of pixels. This technique, however, has disadvantage of taking very long computational time because of the pixel-based calculation and can cause some noise problems. The level simplifying technique is applied to reduce the computational time, and the noise is removed by applying optical flow only to the area of having eigenvector, then using the edge image to generate the depth information of background area. Three-dimensional images were created from two-dimensional images using the proposed method which generates the depth information first and then converts into three-dimensional image using the depth information and DIBR(Depth Image Based Rendering) technique. The error rate was obtained using the SSIM(Structural SIMilarity index).

Simplification of 3D Polygonal Mesh Using Non-Uniform Subdivision Vertex Clustering (비균일 분할 정점 군집화를 이용한 3차원 다각형 메쉬의 단순화)

  • 김형석;박진우;김희수;한규필;하영호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.10B
    • /
    • pp.1937-1945
    • /
    • 1999
  • In paper, we propose a 3D polygonal mesh simplification technique based on vertex clustering. The proposed method differentiates the size of each cluster according to the local property of a 3D object. We determine the size of clusters by considering the normal vector of triangles and the vertex distribution. The subdivisions of cluster are represented by octree. In this paper, we use the Harsdorff distance between the original mesh and the simplified one as a meaningful error value. Because proposed method adaptively determine the size of cluster according to the local property of the mesh, it has smaller error as compared with the previous methods and represent the small regions on detail. Also it can generate a multiresolution model and selectively refine the local regions.

  • PDF

Wavelet-Based Level-of-Detail Representation of 3D Objects (웨이브릿 기반의 3차원 물체 LOD 표현)

  • Lee, Ha-Sup;Yang, Hyun-Seung
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.4
    • /
    • pp.185-191
    • /
    • 2002
  • In this paper, we propose a 3D object LOD(Level of Detail) modeling system that constructs a mesh from range images and generates the mesh of various LOD using the wavelet transform. In the initial mesh generation, we use the marching cube algorithm. We modify the original algorithm to apply it to construct the mesh from multiple range images efficiently. To get the base mesh we use the decimation algorithm which simplifies a mesh with preserving the topology Finally, when reconstructing new mesh which is similar to initial mesh we calculate the wavelet coefficients by using the wavelet transform. We solve the critical problem of wavelet-based methods - the surface crease problem (1) - by using the mesh simplification as the base mesh generation method.

Development of 3D Digital Fashion Design Using the Characteristics of the Flower and Bird Paintings in Korean Folk Paintings (한국 민화 화조화의 특성을 활용한 3D 디지털 패션 디자인)

  • Kyung-Hee Sul;Younhee Lee
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.25 no.1
    • /
    • pp.15-31
    • /
    • 2023
  • This study aimed to propose a fashion design development method using the external and internal characteristics of the flower and bird paintings in traditional Korean folk paintings. As a research method, external and internal characteristics of folk paintings were examined through previous studies and literature research, and folk painting patterns were developed into digital textile designs. Five 3D digital fashion designs were proposed using the CLO 3D program. The external characteristics of folk paintings were as follows: simplification and planarization of object representation, diversification of viewpoints, ignorance of perspective and symmetrical enumeration, strong colors and contrast effects, and the simultaneous representation of time. The internal characteristics of folk paintings were as follows: symbolic meaning, the beauty of free humor, modest aesthetics, complexity of reality and fantasy, and desire of shamanism. The results are as follows. Firstly, the flower and bird painting was a decorative painting style that emphasized decorative beauty and was suitable for developing fashion designs with Korean originality because of the symbolic and internal meanings. Simple layouts and bold free-spirited representations were effective ways to fill the screen with objects and gave the pattern a decorative effect. Secondly, developing a virtual clothing prototype based on digital design method using the external and internal characteristics of folk paintings and producing realistic fashion designs suggest the integrated use of science and technology, embodying modern fashion through the combination of digital fashion content and traditional cultural content. Thirdly, as a result of the development of 3D digital fashion designs, an eco-friendly and sustainable fashion design methods with virtual clothing can suggest a design development method that saves time and cost in the fashion design process while considering the environment.

Video Augmentation of Virtual Object by Uncalibrated 3D Reconstruction from Video Frames (비디오 영상에서의 비보정 3차원 좌표 복원을 통한 가상 객체의 비디오 합성)

  • Park Jong-Seung;Sung Mee-Young
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.4
    • /
    • pp.421-433
    • /
    • 2006
  • This paper proposes a method to insert virtual objects into a real video stream based on feature tracking and camera pose estimation from a set of single-camera video frames. To insert or modify 3D shapes to target video frames, the transformation from the 3D objects to the projection of the objects onto the video frames should be revealed. It is shown that, without a camera calibration process, the 3D reconstruction is possible using multiple images from a single camera under the fixed internal camera parameters. The proposed approach is based on the simplification of the camera matrix of intrinsic parameters and the use of projective geometry. The method is particularly useful for augmented reality applications to insert or modify models to a real video stream. The proposed method is based on a linear parameter estimation approach for the auto-calibration step and it enhances the stability and reduces the execution time. Several experimental results are presented on real-world video streams, demonstrating the usefulness of our method for the augmented reality applications.

  • PDF

3D Mesh Reconstruction Technique from Single Image using Deep Learning and Sphere Shape Transformation Method (딥러닝과 구체의 형태 변형 방법을 이용한 단일 이미지에서의 3D Mesh 재구축 기법)

  • Kim, Jeong-Yoon;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.160-168
    • /
    • 2022
  • In this paper, we propose a 3D mesh reconstruction method from a single image using deep learning and a sphere shape transformation method. The proposed method has the following originality that is different from the existing method. First, the position of the vertex of the sphere is modified to be very similar to the 3D point cloud of an object through a deep learning network, unlike the existing method of building edges or faces by connecting nearby points. Because 3D point cloud is used, less memory is required and faster operation is possible because only addition operation is performed between offset value at the vertices of the sphere. Second, the 3D mesh is reconstructed by covering the surface information of the sphere on the modified vertices. Even when the distance between the points of the 3D point cloud created by correcting the position of the vertices of the sphere is not constant, it already has the face information of the sphere called face information of the sphere, which indicates whether the points are connected or not, thereby preventing simplification or loss of expression. can do. In order to evaluate the objective reliability of the proposed method, the experiment was conducted in the same way as in the comparative papers using the ShapeNet dataset, which is an open standard dataset. As a result, the IoU value of the method proposed in this paper was 0.581, and the chamfer distance value was It was calculated as 0.212. The higher the IoU value and the lower the chamfer distance value, the better the results. Therefore, the efficiency of the 3D mesh reconstruction was demonstrated compared to the methods published in other papers.