Kim, Hye-Mi;Lee, Gun-A.;Yang, Ung-Yeon;Kwak, Tae-Jin;Kim, Ki-Hong
ETRI Journal
/
v.34
no.3
/
pp.466-469
/
2012
In this letter, we propose a dual autostereoscopic display platform employing a natural interaction method, which will be useful for sharing visual data with users. To provide 3D visualization of a model to users who collaborate with each other, a beamsplitter is used with a pair of autostereoscopic displays, providing a visual illusion of a floating 3D image. To interact with the virtual object, we track the user's hands with a depth camera. The gesture recognition technique we use operates without any initialization process, such as specific poses or gestures, and supports several commands to control virtual objects by gesture recognition. Experiment results show that our system performs well in visualizing 3D models in real-time and handling them under unconstrained conditions, such as complicated backgrounds or a user wearing short sleeves.
3D Object Detection using deep neural network has been developed a lot for obstacle detection in autonomous vehicles because it can recognize not only the class of target object but also the distance from the object. But in the case of 3D Object Detection models, the detection performance for distant objects is lower than that for nearby objects, which is a critical issue for autonomous vehicles. In this paper, we introduce a technique that increases the performance of 3D object detection models, particularly in recognizing distant objects, by generating virtual 3D vehicle data and adding it to the dataset used for model training. We used a spherical point tracing method that leverages the characteristics of 3D LiDAR sensor data to create virtual vehicles that closely resemble real ones, and we demonstrated the validity of the virtual data by using it to improve recognition performance for objects at all distances in model training.
KIPS Transactions on Software and Data Engineering
/
v.11
no.12
/
pp.509-516
/
2022
Accurate pose prediction of objects in 3D space is an important visual recognition technique widely used in many applications such as scene understanding in both indoor and outdoor environments, robotic object manipulation, autonomous driving, and augmented reality. Most previous works for object pose estimation have the limitation that they require an exact 3D CAD model for each object. Unlike such previous works, this paper proposes a novel neural network model that can predict the poses of unknown objects based on only their RGB color images without the corresponding 3D CAD models. The proposed model can obtain depth maps required for unknown object pose prediction by using an adaptive depth estimator, AdaBins,. In this paper, we evaluate the usefulness and the performance of the proposed model through experiments using benchmark datasets.
Optical scanning holography (OSH) is a distinct digital holographic technique in that real-time holographic recording a three-dimensional (3-D) object can be acquired by using two-dimensional active optical heterodyne scanning. Applications of the technique so far have included optical scanning cryptography, optical scanning microscopy, 3-D pattern recognition, 3-D holographic TV, and 3-D optical remote sensing. This paper reviews some of the recent progress in OSH. Some possible further works are also discussed.
International Journal of Advanced Culture Technology
/
v.9
no.4
/
pp.302-306
/
2021
Indoor localization is one of the basic elements of Location-Based Service, such as indoor navigation, location-based precision marketing, spatial recognition of robotics, augmented reality, and mixed reality. We propose a Voxel Labeling-based visual positioning system using object simultaneous localization and mapping (SLAM). Our method is a method of determining a location through single image 3D cuboid object detection and object SLAM for indoor navigation, then mapping to create an indoor map, addressing it with voxels, and matching with a defined space. First, high-quality cuboids are created from sampling 2D bounding boxes and vanishing points for single image object detection. And after jointly optimizing the poses of cameras, objects, and points, it is a Visual Positioning System (VPS) through matching with the pose information of the object in the voxel database. Our method provided the spatial information needed to the user with improved location accuracy and direction estimation.
It is actually impossible to model and store all objects which exist in real home environment into robot's database in advance. To resolve this problem, this paper proposes new object modeling method that can be available for robot self-modeling, which is capable of estimating whole model's shape from partial surface data using Generic Model. And this whole produce is conducted to cylindrical objects like cup, bottles and cans which can be easily found at indoor environment. The detailed process is firstly we obtain cylinder's initial principle axis using points coordinates and normal vectors from object's surface after we separate cylindrical object from 3D image. This 3D image is obtained from 3D sensor. And second, we compensate errors in the principle axis repeatedly. Then finally, we do modeling whole cylindrical object using cross sectional principal axis and its radius To show the feasibility of the algorithm, We implemented it and evaluated its accuracy.
최근 자율주행 기술이 큰 주목을 받고 있지만 고가의 센서를 필요로 하기 때문에 연구 및 상용화에 큰 어려움을 겪고 있다. 따라서 본 논문은 쉽게 사용 가능한 딥러닝 2D 객체 인식 모델과 범용 태블릿에 탑재된 저비용 LiDAR 센서를 이용하여 실시간 3D 객체 탐지가 가능한 시스템을 개발한다. 개발된 시스템을 실제 1/10 크기의 차량 모델에 적용하여 테스트해본 결과 개발 용이성과 정확도 측면에서 자율주행을 위한 저비용 센서로 충분히 활용될 가능성이 있음을 확인하였다.
Kim, Sungjin;Park, Seungjun;Park, Hongphyo;Sangchul Won
제어로봇시스템학회:학술대회논문집
/
2001.10a
/
pp.128.6-128
/
2001
In this paper, we present a methodology of sensing and control for a robot system designed to be capable of grasping an object and moving it to target point Stereo vision system is employed to determine to depth map which represents the distance from the camera. In stereo vision system we have used a center-referenced projection to represent the discrete match space for stereo correspondence. This center-referenced disparity space contains new occlusion points in addition to the match points which we exploit to create a concise representation of correspondence an occlusion. And from the depth map we find the target object´s pose and position in 3-D space. To find the target object´s pose and position, we use the method of the model-based recognition.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.22
no.2
/
pp.63-70
/
2022
Although 2D Object detection has been largely improved in the past years with the advance of deep learning methods and the use of large labeled image datasets, 3D object detection from 2D imagery is a challenging problem in a variety of applications such as robotics, due to the lack of data and diversity of appearances and shapes of objects within a category. Google has just announced the launch of Objectron that has a novel data pipeline using mobile augmented reality session data. However, it also is corresponding to 2D-driven 3D object detection technique. This study explores more mature 2D object detection method, and applies its 2D projection to Objectron 3D lifting system. Most object detection methods use bounding boxes to encode and represent the object shape and location. In this work, we explore a stochastic representation of object regions using Gaussian distributions. We also present a similarity measure for the Gaussian distributions based on the Hellinger Distance, which can be viewed as a stochastic Intersection-over-Union. Our experimental results show that the proposed Gaussian representations are closer to annotated segmentation masks in available datasets. Thus, less accuracy problem that is one of several limitations of Objectron can be relaxed.
Wonseop Shin;Jaeseok Yoo;Bumsoo Kim;Yonghoon Jung;Muhammad Sajjad;Youngsup Park;Sanghyun Seo
KSII Transactions on Internet and Information Systems (TIIS)
/
v.18
no.8
/
pp.2381-2398
/
2024
The construction of virtual indoor spaces is crucial for the development of metaverses, virtual production, and other 3D content domains. Traditional methods for creating these spaces are often cost-prohibitive and labor-intensive. To address these challenges, we present a pipeline for generating digital twins of real indoor environments from RGB-D camera-scanned data. Our pipeline synergizes space structure estimation, 3D object detection, and the inpainting of missing areas, utilizing deep learning technologies to automate the creation process. Specifically, we apply deep learning models for object recognition and area inpainting, significantly enhancing the accuracy and efficiency of virtual space construction. Our approach minimizes manual labor and reduces costs, paving the way for the creation of metaverse spaces that closely mimic real-world environments. Experimental results demonstrate the effectiveness of our deep learning applications in overcoming traditional obstacles in digital twin creation, offering high-fidelity digital replicas of indoor spaces. This advancement opens for immersive and realistic virtual content creation, showcasing the potential of deep learning in the field of virtual space construction.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.