• Title/Summary/Keyword: 3D Morphology

Search Result 682, Processing Time 0.031 seconds

The Effect of Electroplating Parameters on the Compositions and Morphologies of Sn-Ag Bumps (Sn-Ag 범프의 조성과 표면 형상에 영향을 미치는 도금 인자들에 관한 연구)

  • Kim, Jong-Yeon;Yoo, Jin;Bae, Jin-Soo;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.4
    • /
    • pp.73-79
    • /
    • 2003
  • With the variation of Ag concentration in bath, current density, duty cycle, additive and agitation for electroplating of Sn-Ag solder, the compositions and the morphologies of solder were studied. It was possible to controll Ag content in Sn-Ag solder by varying Ag concentration in bath and current density. The microstructure size of Sn-Ag solder decreased with increasing current density. Duty cycle of pulse electroplating and quantity of additive affected on Ag content of deposit and surface roughness. In this work eutectic Sn-Ag solder bumps with fine pitch of 30 $\mu\textrm{m}$ and height of 15 $\mu\textrm{m}$ was formed successfully. The Ag content of electrodeposited solder was confirmed by EDS and WDS analyses and the surface morphologies was analyzed by SEM and 3D surface analyzer.

  • PDF

Characterization of Amylolytic Activity by a Marine-Derived Yeast Sporidiobolus pararoseus PH-Gra1

  • Kwon, Yong Min;Choi, Hyun Seok;Lim, Ji Yeon;Jang, Hyeong Seok;Chung, Dawoon
    • Mycobiology
    • /
    • v.48 no.3
    • /
    • pp.195-203
    • /
    • 2020
  • Marine yeasts have tremendous potential in industrial applications but have received less attention than terrestrial yeasts and marine filamentous fungi. In this study, we have screened marine yeasts for amylolytic activity and identified an amylase-producing strain PH-Gra1 isolated from sea algae. PH-Gra1 formed as a coral-red colony on yeast-peptone-dextrose (YPD) agar; the maximum radial growth was observed at 22 ℃, pH 6.5 without addition of NaCl to the media. Based on the morphology and phylogenetic analyses derived from sequences of internal transcribed spacer (ITS) and a D1/D2 domain of large subunit of ribosomal DNA, PH-Gra1 was designated Sporidiobolus pararoseus. S. pararoseus is frequently isolated from marine environments and known to produce lipids, carotenoids, and several enzymes. However, its amylolytic activity, particularly the optimum conditions for enzyme activity and stability, has not been previously characterized in detail. The extracellular crude enzyme of PH-Gra1 displayed its maximum amylolytic activity at 55 ℃, pH 6.5, and 0%-3.0% (w/v) NaCl under the tested conditions, and the activity increased with time over the 180-min incubation period. In addition, the crude enzyme hydrolyzed potato starch more actively than corn and wheat starch, and was stable at temperatures ranging from 15 ℃ to 45 ℃ for 2 h. This report provides a basis for additional studies of marine yeasts that will facilitate industrial applications.

Formulation and Characterization of Lipase Loaded Poly(D,L - lactide-co-glycolide) Nanoparticles (리파아제가 함입된 락타이드-글리콜라이드 공중합체 나노입자의 제조 및 특성)

  • Kim, Beom-Su;ZEROUAL, Y;Lee, Kang-Min
    • Polymer(Korea)
    • /
    • v.31 no.1
    • /
    • pp.20-24
    • /
    • 2007
  • The preservation of biological activity of protein drugs in formulation is still a major challenge for successful drug delivery. Lipase was encapsulated in poly (D,L-lactide- co-glycolide) PLGA nano-particles using a w/o/w solvent evaporation technique. The lipase-containing PLGA/poly (vinyl alcohol) (PVA) nanoparticles were characterized with regard to morphology, size, size distribution, lipase-loading efficiency, in vitro lipase release, and stability of lipase activity. The size of nanoparticles increased as polymer concentration was increased. The size of particles was not significantly affected by the PVA concentration; on the other hand, the particle size distribution was the narrowest when 4% of PVA was used. In optimum conditions, we possessed nanoparticles that characterized 72.5% of encapsulation efficiency, $198.3{\pm}13.8 nm$ size diameter. During the initial burst phase, the in vitro release rate was very fast, reaching 83% within 12 days. Until days 6, enzyme activity increased as the amount of lipase released was increased.

Physical Properties and Morphology of Carbon Nanotubes Prepared by Thermal and Plasma CVD of Acetylene (아세틸렌의 열 및 플라즈마 CVD법으로 제조한 탄소나노튜브의 물성과 구조적 특성)

  • Kim, Myung-Chan;Moon, Seung-Hwan;Lim, Jae-Seok;Hahm, Hyun-Sik;Kim, Myung-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.174-181
    • /
    • 2004
  • Multi-walled carbon nanotubes (CNTs) were prepared by thermal chemical vapor deposition (CVD) and microwave plasma chemical vapor deposition (MPCVD) using various combination of binary catalysts with four transition metals such as Fe, Co, Cu, and Ni. In the preparation of CNTs from acetylene precursor by thermal CVD, the CNTs with very high yield of 43.6 % was produced over $Fe-Co/Al_2O_3$. The highest yield of CNTs was obtained with the catalyst reduced for 3 hr and the yield was decreased with increasing reduction time to 5 hr, due to the formation of $FeAl_2O_4$ metal-aluminate. On the other hand, the CNTs prepared by acethylene plasma CVD had more straight, smaller diameter, and larger aspect ratio(L/D) than those prepared by thermal CVD, although their yield had lower value of 27.7%. The degree of graphitization of CNTs measured by $I_d/I_g$ value and thermal degradation temperature were 1.04 and $602^{\circ}C$, respectively.

A Study on the Effect of Graphene Substrate for Growth of Vanadium Dioxide Nanostructures (이산화바나듐 나노구조물의 성장에서 그래핀 기판의 영향에 관한 연구)

  • Kim, Ki-Chul
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.5
    • /
    • pp.95-100
    • /
    • 2018
  • The metal oxide/graphene nanocomposites are promising functional materials for high capacitive electrode material of secondary batteries, and high sensitive material of high performance gas sensors. In this study, vanadium dioxide($VO_2$) nanostructrures were grown on CVD graphene which was synthesized on Cu foil by thermal CVD, and exfoliated graphene which was exfoliated from highly oriented pyrolytic graphite(HOPG) using a vapor transport method. As results, $VO_2$ nanostructures on CVD graphene were grown preferential growth on abundant functional groups of graphene grain boundaries. The functional groups are served to nucleation site of $VO_2$ nanostructures. On the other hand, 2D & 3D $VO_2$ nanostructures were grown on exfoliated graphene due to uniformly distributed functional groups on exfoliated graphene surface. The characteristics of morphology controlled growth of $VO_2$/graphene nanocomposites would be applied to fabrication process for high capacitive electrode materials of secondary batteries, and high sensitive materials of gas sensors.

Soft Magnetic Property of Ternary Fe-9.8Si-6.0Al Alloy Using by Recycling Fe-Si Electrical Steel Sheet Scrap (Fe-Si 전기강판 폐스크랩을 이용한 3원계 Fe-9.8Si-6.0Al 합금의 연자성 특성)

  • Hong, Won Sik;Yang, Hyoung Woo;Park, Ji-Yeon;Oh, Chulmin;Lee, Woo Sung;Kim, Seung Gyeom;Han, Sang Jo;Shim, Geum Taek;Kim, Hwi-Jun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Fe-9.8Si-6.0Al mother alloy was manufactured using by Fe-3.5Si recycled scrap and Si powder. And then, soft magnetic alloy powder of $D_{50}$ size and sphere type were prepared by gas atomization process. To obtain the soft magnetic powder of a high aspect ratio, in the first, we conducted the ball milling process for 8 hours. And heat treatment was performed under $650^{\circ}C$, 2 hours and $N_2$ atmosphere condition for reducing the residual stress of the powder. Based on these process, we made around $50{\mu}m$ diameter Fe-9.8Si-6.0Al powder, which morphology and shape was a similar to the commercial Fe-Si-Al powder. Finally, the soft magnetic sheets were prepared by tape casting process using by those powders. The permeability of the tape casting sheet was measured, and we confirmed the possibility of reusing to the soft magnetic materials of Fe-Si electric sheet scrap.

Effect of implant surface microtopography by hydroxyapatite grit-blasting on adhesion, proliferation, and differentiation of osteoblast-like cell line, MG-63

  • Park, Sung-Jae;Bae, Sang-Bum;Kim, Su-Kyoung;Eom, Tae-Gwan;Song, Seung-Il
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.37 no.3
    • /
    • pp.214-224
    • /
    • 2011
  • Objective: This study examined the potential of the in vitro osteogenesis of microtopographically modified surfaces, RBM (resorbable blasting media) surfaces, which generate hydroxyapatite grit-blasting. Methods: RBM surfaces were modified hydroxyapatite grit-blasting to produce microtopographically modified surfaces and the surface morphology, roughness or elements were examined. To investigate the potential of the in vitro osteogenesis, the osteoblastic cell adhesion, proliferation, and differentiation were examined using the human osteoblast-like cell line, MG-63 cells. Osteoblastic cell proliferation was examined as a function of time. In addition, osteoblastic cell differentiation was verified using four different methods of an ALP activity assay, a mineralization assay using alizarin red-s staining, and gene expression of osteoblastic differentiation marker using RT-PCR or ELISA. Results: Osteoblastic cell adhesion, proliferation and ALP activity was elevated on the RBM surfaces compared to the machined group. The cells exhibited a high level of gene expression of the osteoblastic differentiation makers (osteonectin, type I collagen, Runx-2, osterix). imilar data was represented in the ELISA produced similar results in that the RBM surface increased the level of osteocalcin, osteopontin, TGF-beta1 and PGE2 secretion, which was known to stimulate the osteogenesis. Moreover, alizarin red-s staining revealed significantly more mineralized nodules on the RBM surfaces than the machined discs. Conclusion: RBM surfaces modified with hydroxyapatite grit-blasting stimulate the in vitro osteogenesis of MG-63 cells and may accelerate bone formation and increase bone-implant contact.

Effects of Carbide Morphology and Heat Treatment on Abrasion Wear Resistance of Chromium White Cast Irons (합금크롬주철의 탄화물형상 및 열처리가 내마모성에 미치는 영향)

  • Yu, Sung-Kon;Matsubara, Yasuhiro
    • Korean Journal of Materials Research
    • /
    • v.12 no.5
    • /
    • pp.407-413
    • /
    • 2002
  • Eutectic high chromium cast irons containing 17%Cr and 26%Cr were produced for this research by making each of them solidify unidirectionally. Abrasion wear test against SiC or $Al_2$O$_3$bonded paper was carried out using test pieces cut cross-sectionally at several distances from the chill face of castings. The wear resistance was evaluated in connection with the parameters such as eutectic colony size($E_w$), area fraction of boundary region of the colony($S_B$) where comparatively large massive chromium carbides are crystallized and, average diameter of chromium carbides in the boundary region($D_c$). The wear rate($R_w$), which is a gradient of straight line of wear loss versus testing time, was influenced by the type and the particle size of the abrasives. The $R_w$ value against SiC was found to be larger than that against A1$_2$O$_3$under the similar abrasive particle size. In the case of SiC, the $R_w$ value increased with an increase in the particle size. The $R_w$ value also increased as the eutectic colony size decreased, and that of the 17%Cr iron was larger than that of the 26%Cr iron at the same $E_w$ value. Both of the $S_B$ and $D_c$ values were closely related to the $R_w$ value regardless of chromium content of the specimens. The $R_w$ values of the annealed specimens were greater than those of the as-cast specimens because of softened matrix structures. As for the relationship between wear rate and macro-hardness of the specimens, the hardness resulting in the minimum wear rate was found to be at 550 HV30.

Synthesis of rhombohedral-structured zinc germanate thin films and characteristics of divalent manganese-activated electroluminescence

  • Yoon, Kyung-Ho;Kim, Joo-Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.453-453
    • /
    • 2010
  • In this study, zinc germanate ($Zn_2GeO_4$) thin films has been synthesized by using radio frequency magnetron sputtering and the divalent manganese-activated luminescence was characterized. X-ray diffraction patterns of the as-deposited $Zn_2GeO_4$:Mn films showed only a broad feature, indicative of an amorphous structure. Scanning electron microscopy images revealed that the as-deposited $Zn_2GeO_4$:Mn has a smooth surface morphology. The $Zn_2GeO_4$:Mn films were found to be crystallized by annealing in air ambient at temperatures as low as $700^{\circ}C$. The annealed $Zn_2GeO_4$:Mn possessed a rhombohedral polycrystalline structure. The broad-band photoluminescent emission spectrum from 470 to 650nm was obtained at room temperature from the $Zn_2GeO_4$:Mn films. The emission peak was centered at around 535nm in the green range, which originates from the intrashell transition of manganese $3d^5$ electrons from $^4T_1$ excited-state level to the $^6A_1$ ground state. The PL emission spectrum had an asymmetric line shape, which results from the $^3d_5$ electron transitions of divalent manganese ions located at different sites of the zinc germanate host crystal lattice. Electroluminescent devices were fabricated using $Zn_2GeO_4$:Mn as an emission layer. The fabricated devices showed a green EL emission similar to the PL emission. The CIE chromaticity color coordinates of the EL emission were determined to be x=0.308 and y=0.657.

  • PDF

Investigating the Morphology and Kinetics of Three-Dimensional Neuronal Networks on Electro-Spun Microstructured Scaffolds

  • Kim, Dongyoon;Kim, Seong-Min;Kang, Donghee;Baek, Goeun;Yoon, Myung-Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.277.2-277.2
    • /
    • 2013
  • Petri dishes and glass slides have been widely used as general substrates for in vitro mammalian cell cultures due to their culture viability, optical transparency, experimental convenience, and relatively low cost. Despite the aforementioned benefit, however, the flat two-dimensional substrates exhibit limited capability in terms of realistically mimicking cellular polarization, intercellular interaction, and differentiation in the non-physiological culture environment. Here, we report a protocol of culturing embryonic rat hippocampal neurons on the electro-spun polymeric network and the results from examination of neuronal cell behavior and network formation on this culture platform. A combinatorial method of laser-scanning confocal fluorescence microscopy and live-cell imaging technique was employed to track axonal outgrowth and synaptic connectivity of the neuronal cells deposited on this model culture environment. The present microfiber-based scaffold supports the prolonged viability of three-dimensionally-formed neuronal networks and their microscopic geometric parameters (i.e., microfiber diameter) strongly influence the axonal outgrowth and synaptic connection pattern. These results implies that electro-spun fiber scaffolds with fine control over surface chemistry and nano/microscopic geometry may be used as an economic and general platform for three-dimensional mammalian culture systems, particularly, neuronal lineage and other network forming cell lines.

  • PDF