• Title/Summary/Keyword: 3D Morphology

Search Result 682, Processing Time 0.027 seconds

Effect of Core Morphology on the Decomposition of CCI₄ over the Surface of Core/Shell Structured Fe₂O₃/MgO Composite Metal Oxides

  • 김해진;강진;박동곤;권호진;Kenneth J. Klabunde
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.8
    • /
    • pp.831-840
    • /
    • 1997
  • Core/shell structured composite metal oxides of Fe2O3/MgO were prepared by thermal decomposition of Fe(acac)3 adsorbed on the surface of MgO cores. The morphology of the composites conformed to that of the MgO used as the cores. Broad powder X-ray diffraction peaks shifted toward larger d, large BET surface area (∼350 m2/g), and the size of crystalline domains in nano range (4 nm), all corroborate to the nanocrystallinity of the Fe2O3/MgO composite which was prepared by using nanocrystalline MgO as the core. By use of microcrystalline MgO as the core, microcrystalline Fe2O3/MgO composite was prepared, and it had small BET surface area of less than 35 m2/g. AFM measurements on nanocrystalline Fe2O3/MgO showed a collection of spherical aggregates (∼80 nm dia) with a very rough surface. On the contrary, microcrystalline Fe2O3/MgO was a collection of plate-like flat crystallites with a smooth surface. The nitrogen adsorption-desorption behavior indicated that microcrystalline Fe2O3/MgO was nonporous, whereas nanocrystalline Fe2O3/MgO was mesoporous. Bimodal distribution of the pore size became unimodal as the layer of Fe2O3 was applied to nanocrystalline MgO. The macropores in a wide distribution which the nanocrystalline MgO had were absent in the nanocrystalline Fe2O3/MgO. The decomposition of CCl4 was largily enhanced by the overlayer of Fe2O3 on nanocrystalline MgO making the reaction between nanocrystalline Fe2O3/MgO and CCl4 be nearly stoichiometric. The reaction products were environmentally benign MgCl2 and CO2. Such an enhancement was not attainable with the microcrystalline samples. Even for the nanocrystalline MgO, the enhancement was not attained, if not with the Fe2O3 layer. Without the layer of Fe2O3, it was observed that the nanocrystalline domain of the MgO transformed into microcrystalline one as the decomposition of CCl4 proceeded on its surface. It appeared that the layer of Fe2O3 on the particles of nanocrystalline Fe2O3/MgO blocked the transformation of the nanocrystalline domain into microcrystalline one. Therefore, in order to attain stoichiometric reaction between CCl4 and Fe2O3/MgO core/shell structured composite metal oxide, the morphology of the core MgO has to be nanocrystalline, and also the nanocrystalline domains has to be sustained until the core was exhausted into MgCl2.

The Reliability of Preoperative Simulation Surgery Planning for Distraction Osteogensis in Craniosynostosis Patients

  • Hussein, Mohammed Ahmed;Kim, Yong Oock
    • Journal of International Society for Simulation Surgery
    • /
    • v.3 no.1
    • /
    • pp.22-27
    • /
    • 2016
  • Background Craniosynostosis management using distraction osteogensis represent a challenge for surgeons due to the great variability of the skull deformity even within the same etiology. The ability to apply the simulation surgery for improving the preoperative planning for distraction osteogensis could improve the results.Planning and Simulation 14 patients presented with craniosynostosis had been subjected to simulation surgery prior to real surgery. 3D CT scans was obtained upon patient admission. Adjustment of all skull position to Frankfort horizontal plane was done. 3 different distraction osteogensis plans were done for each patient according to the skull morphology. For each plane, movement for each bone segment was done according to the pre-planned distraction vectors. Also the distances of distractions were pre-determined according to the cephalic index as well as brain volume. Intraoperatively, we choose the most appropriate plan for the patient by the surgeon. At the end of distraction, 3D CT scan was obtained, and was compared to the simulation plan. Also the distance and the direction of distraction was compared to that of the plan. Accordingly, the distance was almost matching that of the simulation surgery, however the vector of distraction was not matched.Conclusion Preoperative stimulation planning for craniosynostosis patient is very valuable tool in the surgical management of craniosynostosis patients.

Synthesis and Photoluminescence Studies on Sr1-xBaxAl2O4 : Eu2+, Dy3+

  • Ryu, Ho-Jin;Singh, Binod Kumar;Bartwal, Kunwar Singh
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.3
    • /
    • pp.146-149
    • /
    • 2008
  • Strontium-substituted $Sr_{1-x}Ba_xAl_2O_4:Eu^{2+},\;Dy^{3+}$ compositions were prepared by the solid state synthesis method. These compositions were characterized for their phase, crystallinity and morphology using powder x-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. Photoluminescence properties were investigated by measuring excitation spectra, emission spectra and decay time for varying Ba/Sr concentrations. Photoluminescence results show higher luminescence and long decay time for $Sr_{1-x}Ba_xAl_2O_4:Eu^{2+},\;Dy^{3+}$(x=0). This is probably due to the influence of the 5d electron states of $Eu^{2+}$ in the crystal field. Long persistence was observed for these compositions due to $Dy^{3+}$ co-doping.

Preparation of Needle like Aragonite Precipitated Calcium Carbonate (PCC) from Dolomite by Carbonation Method

  • Ramakrishna, Chilakala;Thenepalli, Thriveni;Huh, Jae-Hoon;Ahn, Ji Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.7-12
    • /
    • 2016
  • In this paper, we have developed a simple, new and economical carbonation method to synthesize a pure form of aragonite needles using dolomite raw materials. The obtained aragonite Precipitated Calcium Carbonate (PCC) was characterized by XRD and SEM, for the measurement of morphology, particle size, and aspect ratio (ratio of length to diameter of the particles). The synthesis of aragonite PCC involves two steps. At first, after calcinated dolomite fine powder was dissolved in water for hydration, the hydrated solution was mixed with aqueous solution of magnesium chloride at $80^{\circ}C$, and then $CO_2$ was bubbled into the suspension for 3 h to produce aragonite PCC. Finally, aragonite type precipitated calcium carbonate can be synthesized from natural dolomite via a simple carbonation process, yielding product with average particle size of $30-40{\mu}m$.

How Derivational Prefix Instruction Impacts Incidental Vocabulary Acquisition and Reading Comprehension

  • Choi, Sung-Mook
    • English Language & Literature Teaching
    • /
    • v.13 no.3
    • /
    • pp.1-22
    • /
    • 2007
  • The study examined the effects of explicit derivational morphology instruction (henceforth DMI) on the incidental vocabulary acquisition and reading comprehension of 132 Korean 1st-year high school students who responded to a battery of tests (two vocabulary tests and a reading comprehension test). Multiple statistical tools were used to analyze the data: Analysis of Covariance (ANCOVA), Analysis of Variance (ANOVA), Simple Regression Analysis, Tests of Simple Main Effects, and effect size computation using Cohen's d. The results indicated that (a) DMI enhanced students' ability to infer word meanings in context, (b) DMI promoted high proficiency students' reading comprehension, whereas it impeded intermediate proficiency students' reading comprehension, (c) vocabulary knowledge has a strong positive predictive value for reading comprehension, and (d) the gaps of vocabulary knowledge across proficiency levels were still substantial, despite the observation that DMI promoted students' vocabulary acquisition. These results have a bearing on English as Foreign Language (EFL) reading pedagogy.

  • PDF

Controlled Growth of Layered Silver Stearate on 2D and 3D Surfaces

  • Lee, Seung-Joon;Han, Sang-Woo;Kim, Kwan
    • ETRI Journal
    • /
    • v.25 no.6
    • /
    • pp.517-522
    • /
    • 2003
  • This investigation confirms that silver stearate consists of an infinite-sheet, two-dimensional, nonmolecular layered structure. Scanning electron microscopy, X-ray diffraction, and infrared spectroscopy reveal the following: plate-like morphology is identified from the SEM image, XRD peaks can be indexed to the (0k0) reflections of a layered structure, and infrared peaks show that alkyl chains are present in an all-trans conformational state with little or no significant gauche population. Based on these structural characteristics, we demonstrate that silver stearate, a prototype of layered organic-inorganic hybrid material, can be grown not only in a designed two-dimensional pattern but also in three-dimensionally ordered ways by using carboxyl-group terminated nanoparticles as a template.

  • PDF

Preparation of Porous Layered Carbon Using Magadiite Template (Magadiite 주형을 이용한 층상 카본의 합성)

  • Choe, Seok-Hyon;Jeong, Soon-Yong;Oh, Seong-Geun;Kwon, Oh-Yun
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.408-412
    • /
    • 2005
  • Porous layered carbon was prepared by interlayer pyrolysis of pyrolysis fuel oil (PFO) using magadiite template and successive dissolution of template. Particle morphology was plate type with d-spacing of approximately 0.7 nm and it had constant interlayer space. Specific surface area was $147{\sim}385m^2/g$ depending upon template type, mixing ratios and pyrolysis time.

The Effect of Solution Treatment on Intergranular Corrosion Resistance of a New Type Ultra Low Carbon Stainless Steel

  • Julin, Wang;Nannan, Ni;Qingling, Yan;Lingli, Liu
    • Corrosion Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.140-146
    • /
    • 2007
  • In the paper, with corrosion velocity measurement and metallographic observation on specimens after sulfuric acid/ferric sulfate boiling experiment, intergranular corrosion tendency of the new type ultra low carbon stainless steel developed by ourselves which experienced solution treatment at different temperatures was evaluated. A VHX 500 super depth field tridimensional microscope was used to observe corrosion patterns on the sample surfaces. The depth and width of grain boundary corrosion groove were measured by the tridimensional microscope, which indicated that the corrosion degrees of the samples which received solution treatment at different temperatures are quite different. Transgranular corrosion at different degree occurred along with forged glide lines. After comparison it was proved that the stainless steel treated at $1100^{\circ}C$ performs very well against intergranular corrosion.

Molecular Characterization of Filenchus cylindricus (Thorne & Malek, 1968) Niblack & Bernard, 1985 (Tylenchida: Tylenchidae) from Korea, with Comments on Its Morphology

  • Mwamula, Abraham Okki;Kim, Yiseul;Kim, Yeong Ho;Lee, Ho-wook;Kim, Young Ho;Lee, Dong Woon
    • The Plant Pathology Journal
    • /
    • v.38 no.4
    • /
    • pp.323-333
    • /
    • 2022
  • Filenchus cylindricus (Thorne & Malek, 1968) Niblack & Bernard, 1985 was reported from the sandy rhizospheric soils of Poa pratensis and for the first time in Korea. Females and males are molecularly characterized and morphological and morphometric data supplied. Identification was made using an integrative approach considering morphological characteristics and inferences drawn from the analyses of the D2-D3 expansion segment of 28S rRNA and ITS1-5.8S-ITS2 of rRNA partial sequences. Females and males from Korea conform to the type descriptions and also to subsequent species descriptions from Iowa and Colorado USA, Sudan and Pakistan. Despite the close morphological and morphometric similarities with F. thornei (Andrássy, 1954) Andrássy, 1963, the two species can be adequately differentiated based on molecular data inference.

Evaluation of Shielding Performance of 3D Printer Materials for High-energy Electron Radiation Therapy (고 에너지 전자선 치료를 위한 3D 프린터 물질의 차폐 성능평가)

  • Chang-Woo, Oh;Sang-Il, Bae;Young-Min, Moon;Hyun-Kyoung, Yang
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.6
    • /
    • pp.687-695
    • /
    • 2022
  • To find a 3D printer material that can replace lead used as a shield for high-energy electron beam treatment, the shielding composites were simulated by using MCNP6 programs. The Percent Depth Dose (PDD), Flatness, and Symmetry of linear accelerators emitting high-energy electron beams were measured, and the linear accelerator was compared with MCNP6 after simulation, confirming that the source term between the actual measurement and simulation was consistent. By simulating the lead shield, the appropriate thickness of the lead shield capable of shielding 95% or more of the absorbed dose was selected. Based on the absorption dose data for lead shield with a thickness of 3 mm, the shielding performance was analyzed by simulating 1, 5, 10, and 15 mm thicknesses of ABS+W (10%), ABS+Bi (10%), and PLA+Fe (10%). Each prototype was manufactured with a 3D printer, measured and analyzed under the same conditions as in the simulation, and found that when ABS+W (10%) material was formed to have a thickness of at least 10mm, it had a shielding performance that could replace lead with a thickness of 3mm. The surface morphology and atomic composition of the ABS+W (10%) material were evaluated using a scanning electron microscope (SEM) and an energy dispersive X-ray spectrometer (EDS). From these results, it was confirmed that replacing the commercialized lead shield with ABS+W (10%) material not only produces a shielding effect such as lead, but also can be customized to patients using a 3D printer, which can be very useful for high-energy electron beam treatment.