최근 과학기술의 발달과 급속한 도시화, 산업화 등으로 토지활용에 대한관심이 증가됨에 따라 토지의 이용이 지표면뿐만 아니라 지상의 공간과 지하의 공간으로 확대되고 있다. 이와 같은 토지이용의 입체화에 따라 공간상의 권리의 대상인 각종 건축물 및 시설물 등을 현재의 2차원 지적등록 방법으로는 그 한계성을 나타내고 있다. 따라서 지표면은 물론 공간상에 생성될 수 있는 다양한 형태의 구조물 및 시설물 등의 물리적 객체와 소유권 및 기타 권리관계를 등록할 수 있는 방안이 필요하게 되었다. 본 연구에서는 3차원 지적등록의 필요성과 3차원 지적등록의 대상 등의 분석을 통하여 공간상의 3차원 지적 분할과 이의 가시화를 통하여 실현가능한 3차원 지적 등록을 위한 모형을 제시하고자 하였다.
The 8th International Conference on Construction Engineering and Project Management
/
pp.3-12
/
2020
Nowadays, as-is BIM generation has been popularly adopted in the architecture, engineering, construction and facility management (AEC/FM) industries. In order to generate a 3D as-is BIM of a structural component, current methods require a registration process that merges different sets of point cloud data obtained from multiple locations, which is time-consuming and registration error-prone. To tackle this limitation, this study proposes a registration-free 3D point cloud data acquisition technique for as-is BIM generation. In this study, small-size mirrors that rotate in both horizontal and vertical direction are used to enable the registration-free data acquisition technique. First, a geometric model that defines the relationship among the mirrors, the laser scanner and the target component is developed. Second, determinations of optimal laser scanner location and mirror location are performed based on the developed geometrical model. To validate the proposed registration-free as-is BIM generation technique, simulation tests are conducted on key construction components including a PC slab and a structural wall. The result demonstrates that the registration-free point cloud data acquisition technique can be applicable in various construction elements including PC elements and structural components for as-is BIM generation.
Image Guided Surgery (IGS) system which has variously tried in medical engineering fields is able to give a surgeon objective information of operation process like decision making and surgical planning. This information is displayed through 3D images which are acquired from image modalities like CT and MRI for pre-operation. The technique of image registration is necessary to construct IGS system. Image registration means that 3D model and the object operated by a surgeon are matched on the common frame. Major techniques of registration in IGS system have been used by recognizing fiducial markers placed on the object. However, this method has been criticized due to additional trauma, its invasive protocol inserting fiducial markers in patient's bone and generating noise data when 2D slice images are acquired by image modality because many markers are made of metal. Therefore, this paper developed shape-based registration technique to improve the limitation of fiducial marker based IGS system. Iterative Closest Points (ICP) algorithm was used to match corresponding points and quaternion based rotation and translation transformation using closed form solution applied to find the optimized cost function of transformation. we assumed that this algorithm were used in Total Knee replacement (TKR) operation. Accordingly, we have developed region-based 3D registration technique based on anatomical landmarks and this registration algorithm was evaluated in a femur model. It was found that region-based algorithm can improve the accuracy in 3D registration.
Image Guided Surgery(IGS) system has been developed to provide exquisite and objective information to surgeons for surgical operation process. It is necessary that registration technique is important to match between 3D image model reconstructed from image modalities and the object operated by surgeon. Majority techniques of registration in IGS system have been used by recognizing fiducial markers placed on the object. However, this method has been criticized due to its invasive protocol inserting fiducial markers in patient's bone. Therefore, shape-based registration technique using geometric characteristics of the object has been invested to improve the limitation of IGS system. During Total Knee Replacement(TKR) operation, it is challenge to register with high accuracy by using shape-based registration because the area to acquire sample data from knee is limited. We have developed region-based 3D registration technique based on anatomical landmarks on the object and this registration algorithm was evaluated in femur model. It was found that region-based algorithm can improve the accuracy in 3D registration. We expect that this technique can efficiently improve the IGS system.
Lower limbs deformity is a congenital disease and can also be occurred by an acquired factor. This paper suggests a new technique for surgical planning of Corrective Osteotomy for Lower Limbs (COLL) using 2D-3D medical image registration. Converting to a 3D modeling data of lower limb based on CT (computed tomography) scan, and divide it into femur, tibia and fibula; which composing the lower limb. By rearranging the model based on the biplane 2D images of X-ray data, a 3D upright bone structure was acquired. There are two ways to array the 3D data on the 2D image: Intensity-based registration and feature-based registration. Even though registering Intensity-based method takes more time, this method will provide more precise results, and will improve the accuracy of surgical planning.
In order to reconstruct a full 3D human model in reverse engineering (RE), a 3D scanner needs to be placed arbitrarily around the target model to capture all part of the scanned surface. Then, acquired multiple scans must be registered and merged since each scanned data set taken from different position is just given in its own local co-ordinate system. The goal of the registration is to create a single model by aligning all individual scans. It usually consists of two sub-steps: rough and fine registration. The fine registration process can only be performed after an initial position is approximated through the rough registration. Hence an automated rough registration process is crucial to realize a completely automatic RE system. In this paper an automated rough registration method for aligning multiple scans of complex human face is presented. The proposed method automatically aligns the meshes of different scans with the information of features that are extracted from the estimated principal curvatures of triangular meshes of the human face. Then the roughly aligned scanned data sets are further precisely enhanced with a fine registration step with the recently popular Iterative Closest Point (ICP) algorithm. Some typical examples are presented and discussed to validate the proposed system.
3D 레이저 스캐너는 대상물에 대한 많은 양의 데이터를 빠른 시간 내에 취득할 수 있는 효과적인 방법으로 최근 측량, 변위측정, 대상물의 3차원 데이터 생성, 실내공간정보 구축, BIM (Building Information Model) 등 다양한 분야에 활용되고 있다. 3D 레이저 스캐너를 통해 취득되는 점군데이터의 활용을 위해서는 정합과정을 거쳐 많은 측점에서 취득한 데이터를 통일된 좌표체계를 가진 하나의 데이터로 만드는 과정이 필요하다. 따라서 정합 방법에 따른 점군데이터의 정확도에 대한 분석적 연구가 필요하다 이에 본 연구에서는 3D 레이저 스캐너를 통해 취득되는 점군데이터의 정합방법에 따른 정확도를 분석하고자 하였다. 3D 레이저 스캐너를 통해 연구대상지의 점군데이터를 취득하고, 자료처리를 통해 ICP (Iterative Closest Point) 와 형상정합 방법에 의해 점군데이터를 정합하였으며, 토털스테이션 측량성과와 비교하여 정확도를 분석하였다. 정확도 평가 결과 ICP와 형상정합 방법은 각각 토털스테이션 성과와 0.002~0.005m, 0.002~0.009m의 차이를 나타내었다. 각각의 정합 방법은 실험결과 모두 0.01m 미만의 편차를 나타내어 1:1,000 수치지형도의 허용정확도를 만족하였으며, ICP 및 형상정합을 이용한 점군데이터의 정합이 공간정보 구축에 충분히 활용 가능함을 제시하였다. 향후 형상정합 방법에 의한 점군데이터의 정합은 3D 레이저 스캐너를 활용한 공간정보 구축 과정에서 타겟의 설치를 줄임으로써 생산성 향상에 기여할 것이다.
본 논문은 3차원 모델 표면의 특징 곡률(Feature Curvature) 정보를 이용하여 3차원 거리정보 데이터(Range Image)를 자동으로 정합하는 효율적인 방법을 제안하고 그 성능을 분석하였다. 제안한 알고리즘은 3차원 데이터에 대한 거리정보의 물리적 특성인 가우스 곡률(Gaussian Curvature)을 이용하여 모델의 특징점을 검출하고, 공분산 행렬(Covariance Matrix)을 이용하여 각 데이터의 지역좌표계(Local Coordinate System) 사이의 변위를 계산한다. 3차원 형상 취득장치의 카메라 위치는 3차원 데이터와 투영된 2차원 영상과의 사영행렬(Projection Matrix) 관계식으로 계산한다. 결론부분에서는 실험결과를 기존 연구방법과 비교하여 제안된 방법이 더 빠르고 정확하게 정합하는 결과를 보임으로써 3차원 물체인식이나 모델링에 응용성을 제시하였다.
본 논문에서는 얼굴 영역 수술용 네비게이션을 위한 스테레오 비전과 CT 영상을 이용하여 환자-영상 간 정합(Image to patient registration) 알고리즘의 성능을 평가한다. 환자 영상 간 정합은 스테레오 비전 영상의 특징점 추출과 이를 통한 3차원 좌표 계산, 3차원 좌표와 3차원 CT 영상과의 정합 과정을 거친다. 스테레오 비전 영상에서 3가지 얼굴 특징점 추출 방법과 3가지 정합 방법을 사용하여 생성될 수 있는 5가지 조합 중 정합 정확도가 가장 높은 방법을 평가한다. 또한 머리의 회전에 따라 환자 영상 간 정합의 정확도를 비교한다. 실험을 통해 머리의 회전 각도가 약 20도의 범위 내에서 Active Appearance Model과 Pseudo Inverse Matching을 사용한 정합의 정확도가 가장 높았으며, 각도가 20도 이상일 경우 Speeded Up Robust Features와 Iterative Closest Point를 사용하였을 때 정합 정확도가 높았다. 이 결과를 통해 회전각도가 20도 범위 내에서는 Active Appearance Model과 Pseudo Inverse Matching 방법을 사용하고, 20도 이상의 경우 Speeded Up Robust Features와 Iterative Closest Point를 이용하는 것이 정합의 오차를 줄일 수 있다.
영상 기반 3차원 모델링은 카메라로부터 획득된 영상을 입력으로 하여 3차원 그래픽 모델을 생성하는 기술로 고가형 3D 스캐너의 대체 기술로 연구되어지고 있다 본 논문에서는 스테레오 보정 카메라를 이용한 영상 기반 3차원 모델링 시스템을 제안한다. 3차원 모델을 생성하기 위한 제안 알고리즘은 카메라 보정 단계, 3차원 좌표 복원 단계 3차원 좌표 등록 단계로 이루어진다. 카메라 보정 단계에서는 영상 획득용 카메라에 대한 카메라 행렬을 계산하며 3차원 좌표 복원 단계에서는 스테레오 영상의 일치점으로부터 삼각측량법에 의해 3차원 좌표를 복원한다. 3차원 좌표 등록 단계에서는 개별적으로 복원된 3차원 좌표의 단일 모델을 생성하기 위한 기준 좌표로의 변환을 추정하여 최종 3차원 모델을 생성한다 실험 결과 제안 알고리즘이 비교적 정확하게 .B차원 모델을 생성함을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.