• Title/Summary/Keyword: 3D Mesh Model

Search Result 309, Processing Time 0.03 seconds

Enhanced Mesh Simplification using Extended Quadric Error Metric (확장된 이차오차 척도를 이용한 개선된 메쉬 간략화)

  • Han Tae-hwa;Chun Jun-chul
    • The KIPS Transactions:PartA
    • /
    • v.11A no.5
    • /
    • pp.365-372
    • /
    • 2004
  • Recently, the studies for mesh simplification have been increased according to the application area of the complicate 3D mesh models has been expanded. This paper introduces a novel method for mesh simplification which uses the properties of the mesh model in addition to the geometric locations of the model. The information of the 3D mesh model Includes surface properties such as color, texture, and curvature information as well as geometic information of the model. The most of current simplification methods adopt such geometric information and surface properties individually for mesh simplification. However, the proposed simplification method combines the geometric information and solace properties and applies them to the simplification process simultaneously. In this paper, we exploit the extended geometry based quadric error metric(QEM) which relatively allows fast and accurate geometric simplification of mesh. Thus, the proposed mesh simplification utilizes the quadric error metric based on geometric information and the surface properties such as color, normal, and texture. The proposed mesh simplification method can be expressed as a simple quadric equation which expands the quadric error metric based on geometric information by adding surface properties such as color, normal, and texture. From the experimental results, the simplification of the mesh model based on the proposed method shows the high fidelity to original model in some respects such as global appearance rather than using current geometry based simplification.

Effect of Fluid Mesh Modeling on Surface Ship Shock Response under Underwater Explosion

  • Lee, Sang-Gab;Kwon, Jeong-Il;Chung, Jung-Hoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.351-358
    • /
    • 2001
  • In this study, for the investigation of effects of several parameters, such as fluid mesh boundary size, cylinder or block shape, dimensions of depth, breadth and length at free suface, and fluid mesh element size to the depth direction on a reliable shock response of finite element model under underwater explosion with consideration of the bulk cavitation analysis of a simplified surface ship was carried out using the LS-DYNA3D/USA code. The shock responses were not much affected by the fluid mesh parameters. The computational time was greatly dependent on the number of DAA boundary segments. It is desirable to reduce the DAA boundary segments in the fluid mesh model, and it is not necessary to cover the fluid mesh boundary to or beyond the bulk cavitation zone just for the concerns about an initial shock wave response. It is also the better way to prefer cylinder type of the fluid mesh model to the block one.

  • PDF

Mantissa Chunking Algorithm for the Compression and Progressive Transmission of 3D Mesh Models (삼차원 메쉬 모델의 압축 및 점진적 전송을 위한 가수부 분할 기법)

  • Kim, D.S.;Chung, J.Y.;Kim, H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.2
    • /
    • pp.81-88
    • /
    • 2002
  • Transmission of 3D shape model through Internet has become one of the hottest issues in these days. Presented in this paper is a new approach for the rapid transmission of the geometry data of the shape model. By analyzing the important three factors, the shape fidelity, the file size, and the decompression time, for the compression, we point out the potential problems of previous approaches of using the deltas between consecutive vertices and propose an alternative of directly using the position values of vertices of the model. It turns out that the proposed approach has smaller file size, has lesser distortion in the model, and the decompression is faster.

Point-Based Simplification Using Moving-Least-Squrares (근사 함수를 이용한 Point-Based Simplification)

  • 조현철;배진석;김창헌
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1312-1314
    • /
    • 2004
  • This paper proposes a new simplification algorithm that simplifies reconstructed polygonal mesh from 3D point set considering an original point set. Previous method computes error using mesh information, but it makes to increase error of difference between an original and a simplified model by reason of implementation of simplification. Proposed method simplifies a reconstructed model using an original point data, we acquire a simplified model similar an original. We show several simplified results to demonstrate the usability of our methods.

  • PDF

3-D Finite Element Mesh Generation of Tires Considering Detailed Tread Pattern (상세 트레드 패턴을 반영한 3차원 타이어 유한요소 격자 생성)

  • Cho, Jin-Rae;Kim, Ki-Whan;Hong, Sang-Il;Kim, Nam-Jeon;Kim, Kee-Woon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1615-1622
    • /
    • 2003
  • Being contacted directly with. ground, the tire tread part is in shape of complex patterns of variable ASDs(anti-skid depth) to satisfy various tire performances. However, owing to the painstaking mesh generation job and the extremely long CPU-time, conventional 3-D tire analyses have been performed by either neglecting tread pattern or modeling circumferential grooves only. As a result, such simplified analysis models lead to considerably poor numerical expectations. This paper addresses the development of a 3-D tire mesh generation considering the detailed tread pattern and shows that the contact pressure and frictional energy distribution of tires considering the detailed pattern become better than those by the simplified tire model.

사각형강목의 끝자루를 이용한 트롤어구의 어획선택성 연구 ( 2 ) - 다이아몬드형강목과 사각형강목의 선택성비교 - ( Studies on the Selectivity of the Trawl Net With the Square Mesh Cod-End ( 2 ) - Comparison of Diamond and Square Mesh Cod-End - )

  • Kim, Sam-Kon;Lee, Ju-Hee;Park , Jeong-Sik
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.3
    • /
    • pp.172-181
    • /
    • 1994
  • The mesh selectivity of diamond and suare mesh cod-ends at the Southern Korean Sea and the East China Sea were compared for Pampus argenteus, Trachurus japonicus, Trichiurus lepturus. Selection trials were carried out using diamond and square mesh cod-end by trouser type cod-end with cover net. of which the mesh cod-end has four types : A(51.2mm), B(70.2mm), C(77.6mm), D(88.0mm). Selection curves and selection parameters were calculated using a logistic model. The results obained are summarized as follows : 1. Harvest fish : In B. C and D type selection range and fifty percent selection length of the square mesh were about 21mm, 11mm : 12mm, 18mm and 34mm, 5mm higher than those of the diamond mesh, respectively. Selection factor of master curve for the diamond mesh was 1.54 and for the square mesh was 1.68. The optimum mesh size for the diamond mesh was 97.4mm and for the square mesh was 89.3mm, the difference was 8.1mm. 2. Horse mackerel : In A type, selection range was nearly the same for the diamond and the square mesh, but fifty percent selection length of the square mesh was 43mm higher than the diamond mesh. In B. C and D type, selection range and fifty percent selection length of the square mesh were about 6mm, 3mm : 24mm, 21mm and 11mm, 42mm higher than those of the diamond mesh, respectively. Selection factor of master curve for the diamond mesh was 2.37, for the square mesh was 2.77. The optimum mesh size for the diamond mesh was 78.1mm and for the square mesh was 66.8mm, the difference was 11.3mm. 3. Hair tail : In A, B and C type, selection range of the square mesh was about 34mm, 8mm, 60mm higher than those of the diamond mesh. Fifty percent selection length for the diamond mesh was about 5mm, 7mm, 8mm higher than that of the square mesh. Selection factor of master curve for the diamond mesh was 3.11, for the square mesh was 3.48. The optimum mesh size for the diamond mesh was 64.3mm and for the square mesh was 57.5mm, the difference was 6.8mm.

  • PDF

3D Object Restoration and Data Compression Based on Adaptive Simplex-Mesh Technique (적응 Simplex-Mesh 기술에 기반한 3차원 물체 복원과 자료 압축)

  • 조용군
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.4
    • /
    • pp.436-443
    • /
    • 1999
  • Most of the 3D object reconstruction techniques divide the object into multiplane and approximate the surfaces of the object. The Marching Cubes Algorithm which initializes the mesh structure using a given isovalue. and Delaunay Tetrahedrisation are widely used. Deformable models are well-suited for general object reconstruction because they make little assumptions about the shape to recover and they can reconstruct objects *om various types of datasets. Now, many researchers are studying the reconstruction systems based on a deformable model. In this paper, we propose a novel method for reconstruction of 3D objects. This method, for a 3D object composed of curved planes, compresses the 3D object based on the adaptive simplexmesh technique. It changes the pre-defined mesh structure, so that it may approach to the original object. Also, we redefine the geometric characteristics such as curvatures. As results of simulations, we show reconstruction of the original object with high compression and concentration of vertices towards parts of high curvature in order to optimize the shape description.

  • PDF

3D Mesh Watermarking Using CEGI (CEGI를 이용한 3D 메쉬 워터마킹)

  • 이석환;김태수;김승진;권기룡;이건일
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.4C
    • /
    • pp.472-484
    • /
    • 2004
  • We proposed 3D mesh watermarking algorithm using CEGI distribution. In the proposed algorithm, we divide a 3D mesh of VRML data into 6 patches using distance measure and embed the same watermark bits into the normal vector direction of meshes that mapped into the cells of each patch that have the large magnitude of complex weight of CEGI. The watermark can be extracted based on the known center point of each patch and order information of cell. In an attacked model by affine transformation, we accomplish the realignment process before the extraction of the watermark. Experiment results exhibited the proposed algorithm is robust by extracting watermark bit for geometrical and topological deformed models.

Triangular Mesh Generation using non-uniform 3D grids (Non-uniform 3D grid를 이용한 삼각형망 생성에 관한 연구)

  • 강의철;우혁제;이관행
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1283-1287
    • /
    • 2003
  • Reverse engineering technology refers to the process that creates a CAD model of an existing part using measuring devices. Recently, non-contact scanning devices have become more accurate and the speed of data acquisition has increased drastically. However, they generate thousands of points per second and various types of point data. Therefore. it becomes a important to handle the huge amount and various types of point data to generate a surface model efficiently. This paper proposes a new triangular mesh generation method using 3D grids. The geometric information of a part can be obtained from point cloud data by estimating normal values of the points. In our research, the non-uniform 3D grids are generated first for feature based data reduction based on the geometric information. Then, triangulation is performed with the reduced point data. The grid structure is efficiently used not only for neighbor point search that can speed up the mesh generation process but also for getting surface connectivity information to result in same topology surface with the point data. Through this integrated approach, it is possible to create surface models from scanned point data efficiently.

  • PDF

Volume Mesh Parameterization for Topological Solid Sphere Models (구형 위상구조 모델에 대한 볼륨메쉬 파라메터화)

  • Kim, Jun-Ho;Lee, Yun-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.4
    • /
    • pp.106-114
    • /
    • 2010
  • Mesh parameterization is the process of finding one-to-one mapping between an input mesh and a parametric domain. It has been considered as a fundamental tool for digital geometric processing which is required to develop several applications of digital geometries. In this paper, we propose a novel 3D volume parameterization by means that a harmonic mapping is established between a 3D volume mesh and a unit solid cube. To do that, we firstly partition the boundary of the given 3D volume mesh into the six different rectangular patches whose adjacencies are topologically identical to those of a surface cube. Based on the partitioning result, we compute the boundary condition as a precondition for computing a volume mesh parameterization. Finally, the volume mesh parameterization with a low-distortion can be accomplished by performing a harmonic mapping, which minimizes the harmonic energy, with satisfying the boundary condition. Experimental results show that our method is efficient enough to compute 3D volume mesh parameterization for several models, each of whose topology is identical to a solid sphere.