• Title/Summary/Keyword: 3D Mesh

Search Result 788, Processing Time 0.023 seconds

Depth Compression for Multi-View Sequences Using 3-D Mesh Representation (3-D 메쉬 모델을 이용한 다시점 영상의 깊이 정보 압축)

  • Jung, Il-Lyong;Kim, Chang-Su
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.203-204
    • /
    • 2007
  • In this work, we propose a compression algorithm for depth images, which are obtained from multi-view sequences. The proposed algorithm represents a depth image using a 3-D regular triangular mesh and predictively encodes the mesh vertices using a linear prediction scheme. The prediction errors are encoded with a arithmetic coder. Simulation results demonstrate that the proposed algorithm provides better performances than the JPEG2000 lossless coder.

  • PDF

An Analysis of 3D Mesh Accuracy and Completeness of Combination of Drone and Smartphone Images for Building 3D Modeling (건물3D모델링을 위한 드론과 스마트폰영상 조합의 3D메쉬 정확도 및 완성도 분석)

  • Han, Seung-Hee;Yoo, Sang-Hyeon
    • Journal of Cadastre & Land InformatiX
    • /
    • v.52 no.1
    • /
    • pp.69-80
    • /
    • 2022
  • Drone photogrammetry generally acquires images vertically or obliquely from above, so when photographing for the purpose of three-dimensional modeling, image matching for the ground of a building and spatial accuracy of point cloud data are poor, resulting in poor 3D mesh completeness. Therefore, to overcome this, this study analyzed the spatial accuracy of each drone image by acquiring smartphone images from the ground, and evaluated the accuracy improvement and completeness of 3D mesh when the smartphone image is not combined with the drone image. As a result of the study, the horizontal (x,y) accuracy of drone photogrammetry was about 1/200,000, similar to that of traditional photogrammetry. In addition, it was analyzed that the accuracy according to the photographing method was more affected by the photographing angle of the object than the increase in the number of photos. In the case of the smartphone image combination, the accuracy was not significantly affected, but the completeness of the 3D mesh was able to obtain a 3D mesh of about LoD3 that satisfies the digital twin city standard. Therefore, it is judged that it can be sufficiently used to build a 3D model for digital twin city by combining drone images and smartphones or DSLR images taken on the ground.

Finite Element Mesh Generation from 3D Laser Scanned Data (3차원 레이저 스캐닝 점 좌표 데이터로부터 CAE 유한 요소 메쉬 생성 알고리즘 개발)

  • Jarng S.S.;Yang H.J.;Lee J.H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.1
    • /
    • pp.70-75
    • /
    • 2005
  • A 3D solid element mesh generation algorithm was newly developed. 3D surface points of global rectangular coordinates were supplied by a 3D laser scanner. The algorithm is strait forward and simple but it generates mixed solid elements such as hexagonal, pyramid and prism types. Then, the surface triangular or rectangular elements were generated from the solid elements. The key of the algorithm is elimination of elements and 3D adaptive surface smoothing using given 3D surface point data.

Progressive Compression of 3D Mesh Geometry Using Sparse Approximations from Redundant Frame Dictionaries

  • Krivokuca, Maja;Abdulla, Waleed Habib;Wunsche, Burkhard Claus
    • ETRI Journal
    • /
    • v.39 no.1
    • /
    • pp.1-12
    • /
    • 2017
  • In this paper, we present a new approach for the progressive compression of three-dimensional (3D) mesh geometry using redundant frame dictionaries and sparse approximation techniques. We construct the proposed frames from redundant linear combinations of the eigenvectors of a combinatorial mesh Laplacian matrix. We achieve a sparse synthesis of the mesh geometry by selecting atoms from a frame using matching pursuit. Experimental results show that the resulting rate-distortion performance compares favorably with other progressive mesh compression algorithms in the same category, even when a very simple, sub-optimal encoding strategy is used for the transmitted data. The proposed frames also have the desirable property of being able to be applied directly to a manifold mesh having arbitrary topology and connectivity types; thus, no initial remeshing is required and the original mesh connectivity is preserved.

Geographic information 3D Synthetic Model based on Regular Mesh (Regular Mesh 기반 지리정보 3D 합성모델)

  • Jung, Ji-Hwan;Hwang, Sun-Myung;Kim, Sung-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.4
    • /
    • pp.616-625
    • /
    • 2011
  • There are two representative geometry rendering methods. One is Geometry Clipmaps, another is ROAM 2.0. We propose an extended Geometry Clipmaps algorithm which does not focus on CPU operation but the GPU for faster and wider visibility area. The extended algorithm presents mesh configuration method of each level by LOD, how to configurate Mesh network between levels, mesh block method for rendering optimization using VFC, and image mapping method to get high resolution up to 1 m.

A Study on the Voxel Mesh Technique for Finite Element Modeling of Human Bone (인체 골(bone)의 유한요소 모델링을 위한 VOXEL MESH 기법에 관한 연구)

  • 변창환;오택열;백승민;채경덕
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1081-1084
    • /
    • 2002
  • In this study, we perform 3-D reconstruction of human proximal femur from DICOM files by using voxel mesh algorithm. After 3-D reconstruction, the model converted to Finite Element model which developed for automatically making not only 3-D geometrical model but also FE model from medical image dataset. During this job, trabecular pattern, one of characteristic of human bone can be added to the model by means of giving it's own elastic property calculated from intensity in CT scanned image to the each voxel. And then another model is made from same image dataset which have two material properties - one corresponds to cortical bone, another to trabecular bone. Finally, validity of voxel mesh technique is verified through comparing results of FE analysis, free vibration and stress analysis.

  • PDF

The Fast 3D mesh generation method for a large scale of point data (대단위 점 데이터를 위한 빠른 삼차원 삼각망 생성방법)

  • Lee, Sang-Han;Park, Kang
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.705-711
    • /
    • 2000
  • This paper presents a fast 3D mesh generation method using a surface based method with a stitching algorithm. This method uses the surface based method since the volume based method that uses 3D Delaunay triangulation can hardly deal with a large scale of scanned points. To reduce the processing time, this method also uses a stitching algorithm: after dividing the whole point data into several sections and performing mesh generation on individual sections, the meshes from several sections are stitched into one mesh. Stitching method prevents the surface based method from increasing the processing time exponentially as the number of the points increases. This method works well with different types of scanned points: a scattered type points from a conventional 3D scanner and a cross-sectional type from CT or MRI.

  • PDF

Merge of VRML Mesh for 3D Shape Data Compression and Transmission (3D 형상 데이터의 압축 및 전송을 위한 VRML 메쉬의 병합에 관한 연구)

  • 장태범;문광원;정재열;김덕수
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.2
    • /
    • pp.89-95
    • /
    • 2002
  • VRML data, which is mainly structural element, is frequently used for modeling and visualizing 3D objects. Although there can be variations, it is a usual practice to represent 3D shapes in VRML format. Ever since the advent of Internet, there have been strong needs to transfer shape data through Internet. Because of this need, it is necessary to transform a data file in VRML or similar format into a more convenient form to transfer through the network. In a VRML file, a model is sometimes divided into a set of triangle meshes due to several practical reasons. However, this causes various demerits for the fast transmission. Therefore, it is more efficient to merge the mesh sets into one mesh set for the transmission. In this paper, we present the problems in the merge process and the techniques to handle the situation.

3D Tunnel Modeling by Parametric Representation of Geometry (매개변수식 기하 표현법에 의한 3차원 터널 모델링)

  • 이형우;신대석
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.33-42
    • /
    • 2002
  • A method of automatic 3D tunnel modeling is proposed. The proposed method used the parametric representation of geometry and a hierarchical and relational data structure. These two bases provide the generalization and extension for 3D tunnel modeling. Especially, these two fundamentals ion the basis iota representing the characteristics of the tunnel structure for analysis. The constant-curvature characteristic is exploited to generate 3D mesh on the tunnel surface. This is attributed to the advantage that any 2D automatic mesh generation algorithm can be applied to 3D mesh modeling.

Volume Mesh Parameterization for Topological Solid Sphere Models (구형 위상구조 모델에 대한 볼륨메쉬 파라메터화)

  • Kim, Jun-Ho;Lee, Yun-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.4
    • /
    • pp.106-114
    • /
    • 2010
  • Mesh parameterization is the process of finding one-to-one mapping between an input mesh and a parametric domain. It has been considered as a fundamental tool for digital geometric processing which is required to develop several applications of digital geometries. In this paper, we propose a novel 3D volume parameterization by means that a harmonic mapping is established between a 3D volume mesh and a unit solid cube. To do that, we firstly partition the boundary of the given 3D volume mesh into the six different rectangular patches whose adjacencies are topologically identical to those of a surface cube. Based on the partitioning result, we compute the boundary condition as a precondition for computing a volume mesh parameterization. Finally, the volume mesh parameterization with a low-distortion can be accomplished by performing a harmonic mapping, which minimizes the harmonic energy, with satisfying the boundary condition. Experimental results show that our method is efficient enough to compute 3D volume mesh parameterization for several models, each of whose topology is identical to a solid sphere.