• Title/Summary/Keyword: 3D Mesh

Search Result 787, Processing Time 0.026 seconds

Direct construction of a four-dimensional mesh model from a three-dimensional object with continuous rigid body movement

  • Otomo, Ikuru;Onosato, Masahiko;Tanaka, Fumiki
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.2
    • /
    • pp.96-102
    • /
    • 2014
  • In the field of design and manufacturing, there are many problems with managing dynamic states of three-dimensional (3D) objects. In order to solve these problems, the four-dimensional (4D) mesh model and its modeling system have been proposed. The 4D mesh model is defined as a 4D object model that is bounded by tetrahedral cells, and can represent spatio-temporal changes of a 3D object continuously. The 4D mesh model helps to solve dynamic problems of 3D models as geometric problems. However, the construction of the 4D mesh model is limited on the time-series 3D voxel data based method. This method is memory-hogging and requires much computing time. In this research, we propose a new method of constructing the 4D mesh model that derives from the 3D mesh model with continuous rigid body movement. This method is realized by making a swept shape of a 3D mesh model in the fourth dimension and its tetrahedralization. Here, the rigid body movement is a screwed movement, which is a combination of translational and rotational movement.

3D Mesh Model Exterior Salient Part Segmentation Using Prominent Feature Points and Marching Plane

  • Hong, Yiyu;Kim, Jongweon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1418-1433
    • /
    • 2019
  • In computer graphics, 3D mesh segmentation is a challenging research field. This paper presents a 3D mesh model segmentation algorithm that focuses on removing exterior salient parts from the original 3D mesh model based on prominent feature points and marching plane. To begin with, the proposed approach uses multi-dimensional scaling to extract prominent feature points that reside on the tips of each exterior salient part of a given mesh. Subsequently, a set of planes intersect the 3D mesh; one is the marching plane, which start marching from prominent feature points. Through the marching process, local cross sections between marching plane and 3D mesh are extracted, subsequently, its corresponding area are calculated to represent local volumes of the 3D mesh model. As the boundary region of an exterior salient part generally lies on the location at which the local volume suddenly changes greatly, we can simply cut this location with the marching plane to separate this part from the mesh. We evaluated our algorithm on the Princeton Segmentation Benchmark, and the evaluation results show that our algorithm works well for some categories.

A Study on Realtime Mesh Deformation of 3D Avatar Body (3D 아바타의 실시간 체형 변형에 관한 연구 - 메쉬모핑 기법을 이용한 아바타 및 아이템의 체형변형)

  • Shin, In-Sup
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.688-692
    • /
    • 2008
  • All items from the 3d avatar system should be made to fit the avatar's physical form. However this method is not only a disadvantage in an economical perspective, but also it is difficult to satisfy the client's needs of avatar's variety form. To provide various forms of the avatars, the work load naturally increases. This research is about changing the 3d avatar's body shape based on 3d mesh morphing which allows the 3d avatar with smallest data possible. The result mesh could be generated from source and target mesh with the deformation ratio and all 3d items like hair style, pants, shoes and etc, which was made to fit to basic mesh also could be deformed automatically, to fit them to the result mesh as is. Even if the different physical avatar mesh body such as children style is added to 3d avatar system, it is not necessary to make the 3d avatar items which is fit to the new physical body, New avatar mesh body will be adopted to the 3d avatar system in real time.

  • PDF

Automatic Tetrahedral Mesh Generation using 3-D Operators (3-D 오퍼레이터를 이용한 사면체 요소망의 자동 생성)

  • 권기연;채수원;이병채
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.1
    • /
    • pp.27-34
    • /
    • 2004
  • A tetrahedral mesh generation scheme using 3-D operators has been presented. The proposed scheme employs new 3-D operators such as rearranging and modified finishing operators in addition to the previous trimming, wedging, digging, splitting and finishing operators. These new operators have been introduced in order to increase the stability of mesh generation process. Check processings with surrounded element edges and faces have also been optimized by employing a searching algorithm. Sample meshes are constructed to demonstrate the mesh generating capability of the proposed algorithm.

Development of a System to Convert a 3D Mesh Model in STL Format into OBJ Format (STL 3D 형식의 메쉬 모델을 형식으로 OBJ 변환하는 시스템 개발)

  • Yeo, Changmo;Park, Chanseok;Mun, Duhwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.3
    • /
    • pp.78-86
    • /
    • 2018
  • The 3D mesh model is used in various fields, such as virtual reality, shape-based searching, 3D simulation, reverse engineering, 3D printing, and laser scanning. There are various formats for the 3D mesh model, but STL and OBJ are the most typical. Since application systems support different 3D mesh formats, developing technology for converting 3D mesh models from one format into another is necessary to ensure data interoperability among systems. In this paper, we propose a method to convert a 3D mesh model in STL format into the OBJ format. We performed the basic design of the conversion system and developed a prototype, then verified the proposed method by experimentally converting an STL file into an OBJ file for test cases using this prototype.

OpenVolMesh: Generic and Efficient Data Structure for 3D Volumetric Meshes (OpenVolMesh: 삼차원 볼륨 기반의 메쉬 표현을 위한 범용적이고 효과적인 자료 구조)

  • Kim, Jun-Ho;Seo, Jin-Seok;Oh, Sei-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.7
    • /
    • pp.85-92
    • /
    • 2008
  • Meshes are the most appropriate data structures for representing 3D geometries. Surface meshes have been frequently used for representing 3D geometries, which only samples data on the surfaces of the given 3D geometries. Thanks to the improvements of computing powers, it is required to develop more complicated contents which utilize the volumetric information of 3D geometries. In this paper, we introduce a novel volumetric mesh libraries based on the half-face data structure, called OpenVolMesh, and describe its designs and implementations. The OpenVolMesh extends the OpenMesh, which is one of the most famous mesh libraries, by supporting volumetric meshes. The OpenVolMesh provides the generic programming, dynamic allocations of primitive properties, efficient array-based data structures, and source-level compatibility with OpenMesh. We show the usefulness of the OpenVolMesh in the developments of 3D volumetric contents with prototypic implementations such as volumetric mesh smoothing and CW-cell decompositions.

Generation of Fixed Spectral Basis for Three-Dimensional Mesh Coding Using Dual Graph

  • Kim Sung-Yeol;Yoon Seung-Uk;Ho Yo-Sung
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.137-142
    • /
    • 2004
  • In this paper, we propose a new scheme for geometry coding of three-dimensional (3-D) mesh models using a fixed spectral basis. In order to code the mesh geometry information, we generate a fixed spectral basis using the dual graph derived from the 3-D mesh topology. After we partition a 3-D mesh model into several independent sub-meshes to reduce coding complexity, the mesh geometry information is projected onto the generated orthonormal bases which are the eigenvectors of the Laplacian matrix of the 3-D mesh. Finally, spectral coefficients are coded by a quantizer and a variable length coder. The proposed scheme can not only overcome difficulty of generating a fixed spectral basis, but also reduce coding complexity. Moreover, we can provide an efficient multi-resolution representation of 3-D meshes.

  • PDF

Fast 3D mesh generation using projection for line laser-based 3D Scanners (라인 레이저 기반 3차원 스캐너에서 투영을 이용한 고속 3D 메쉬 생성)

  • Lee, Kyungme;Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.3
    • /
    • pp.513-518
    • /
    • 2016
  • This paper presents a fast 3D mesh generation method using projection for line laser-based 3D scanners. The well-known method for 3D mesh generation utilizes convex hulls for 4D vertices that is converted from the input 3D vertices. This 3D mesh generation for a large set of vertices requires a lot of time. To overcome this problem, the proposed method takes (${\theta}-y$) 2D depth map into account. The 2D depth map is a projection version of 3D data with a form of (${\theta}$, y, z) which are intermediately acquired by line laser-based 3D scanners. Thus, our 2D-based method is a very fast 3D mesh generation method. To evaluate our method, we conduct experiments with intermediate 3D vertex data from line-laser scanners. Experimental results show that the proposed method is superior to the existing method in terms of mesh generation speed.

Noise Smoothing using the 2D/3D Magnitude Ratio of Mesh Data (메쉬 데이터의 2D/3D 면적비를 이용한 잡음 평활화)

  • Hyeon, Dae-Hwan;WhangBo, Taeg-Keun
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.4
    • /
    • pp.473-482
    • /
    • 2009
  • Reconstructed 3D data from computer vision includes necessarily a noise or an error. When these data goes through a mesh process, the different 3D mesh data from original shape comes to make by a noise or an error. This paper proposed the method that smooths a noise effectively by noise analysis in reconstructed 3D data. Because the proposed method is smooths a noise using the area ratio of the mesh, the pre-processing of unusable mesh is necessary in 3D mesh data. This study detects a peak noise and Gaussian noise using the ratio of 3D volume and 2D area of mesh and smooths the noise with respect of its characteristics. The experimental results using synthetic and real data demonstrated the efficacy and performance of proposed algorithm.

  • PDF

Efficient Mesh Reconstruction Based on Modified Weight Factor (수정된 가중치를 이용한 효율적 Mesh Reconstruction)

  • Jung, Woo-Kyung;Han, Jong-Ki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.1275-1277
    • /
    • 2022
  • Structure-from-Motion(SfM), Multi-view Stereo(MVS)이 이용되는 3D Reconstruction 과정에서 생성된 3D 포인트 클라우드는 RGB 영상에 기반하여 생성되므로 실제 객체 혹은 Scene 과 달리 point 와 point 간에 존재하는 빈 공간이 발생한다. 이를 개선하기 위하여 3D 포인트 클라우드를 이용하여 3D Mesh 를 복원하는 Mesh Reconstruction 과정을 거치게 된다. 본 논문에서는 Mesh Reconstruction 과정에서 자유공간 지지도에 기반해 수정한 가중치를 이용하는 효율적인 방법을 제안한다. 실험을 통하여 제안한 알고리즘을 이용한 복원 결과가 기존보다 개선됨을 보인다.

  • PDF