• Title/Summary/Keyword: 3D MRI

Search Result 333, Processing Time 0.027 seconds

f-MRI with 2D & 3D Visual Stimuli

  • 김치영;김남주;문길영;임종우;정성택;최보영;신경섭;안창범
    • Proceedings of the KSMRM Conference
    • /
    • 2001.11a
    • /
    • pp.141-141
    • /
    • 2001
  • 목적: 최근 들어 컴퓨터 그래픽의 발전과 함께 가상 현실 등에 연구 및 응용이 급증하고 있다. 본 연구의 목적은 fMRI를 이용하여 이차원 및 삼차원 시각자극에 대한 뇌의 기능을 살펴보는 것이다. 같은 영상에 대한 2D와 3D영상을 보여 주면서, fMRI 영상 데이터를 얻었다. 사람에게 미치는 자극 중에 하나인 시각 자극에서 2D와 3D에 대해 반응하는 차이를 규명하고자 하였다. 대상 및 방법: Gradient echo를 기반으로 한 EPI 영상기법을 이용하여, 가톨릭 의대의 3.0 Tesla whole body MRI system에서 실험하였다. 해부학적 영상을 얻기 위해서는 spin echo를 이용하였다. 4명의 volunteer에 대해 같은 영상에 대한 2D와 3D영상을 보여주면서 실험을 수행하였다. 시각자극의 paradigm은 5단계 (rest, active, rest, active, rest)로 하였고, 3번의 rest와 2번의 active구간을 사이에 두었다. 각각의 구간은 10번의 iteration으로 이루어져 있고, 첫 번째 구간은 15번으로 하여 처음 5개의 결과를 버리고, 데이터를 얻었다. 결과는 spm99를 이용하여 분석하였다.

  • PDF

f-MRI with 2D & 3D Visual Stimuli

  • 김치영;김남주;문길영;임종우;정성택;최보영;신경섭;안창범
    • Proceedings of the KSMRM Conference
    • /
    • 2001.11a
    • /
    • pp.110-110
    • /
    • 2001
  • 목적: 최근 들어 컴퓨터 그래픽의 발전과 함께 가상 현실 등에 연구 및 응용이 급증하고 있다. 본 연구의 목적은 fMRI를 이용하여 이차원 및 삼차원 시각자극에 대한 뇌의 기능을 살펴보는 것이다. 같은 영상에 대한 2D와 3D영상을 보여 주면서, fMRI 영상 데이터를 얻었다. 사람에게 미치는 자극 중에 하나인 시각 자극에서 2D와 3D에 대해 반응하는 차이를 규명하고자 하였다. 대상 및 방법: Gradient echo를 기반으로 한 EPI 영상기법을 이용하여, 가톨릭 의대의 3.0 Tesla whole body MRI system에서 실험하였다. 해부학적 영상을 얻기 위해서는 spin echo를 이용하였다. 4명의 volunteer에 대해 같은 영상에 대한 2D와 3D영상을 보여주면서 실험을 수행하였다. 시각자극의 paradigm은 5단계 (rest, active, rest, active, rest)로 하였고, 3번의 rest와 2번의 active구간을 사이에 두었다. 각각의 구간은 10번의 iteration으로 이루어져 있고, 첫 번째 구간은 15번으로 하여 처음 5개의 결과를 버리고, 데이터를 얻었다. 결과는 spm99를 이용하여 분석하였다.

  • PDF

MRI Image Super Resolution through Filter Learning Based on Surrounding Gradient Information in 3D Space (3D 공간상에서의 주변 기울기 정보를 기반에 둔 필터 학습을 통한 MRI 영상 초해상화)

  • Park, Seongsu;Kim, Yunsoo;Gahm, Jin Kyu
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.2
    • /
    • pp.178-185
    • /
    • 2021
  • Three-dimensional high-resolution magnetic resonance imaging (MRI) provides fine-level anatomical information for disease diagnosis. However, there is a limitation in obtaining high resolution due to the long scan time for wide spatial coverage. Therefore, in order to obtain a clear high-resolution(HR) image in a wide spatial coverage, a super-resolution technology that converts a low-resolution(LR) MRI image into a high-resolution is required. In this paper, we propose a super-resolution technique through filter learning based on information on the surrounding gradient information in 3D space from 3D MRI images. In the learning step, the gradient features of each voxel are computed through eigen-decomposition from 3D patch. Based on these features, we get the learned filters that minimize the difference of intensity between pairs of LR and HR images for similar features. In test step, the gradient feature of the patch is obtained for each voxel, and the filter is applied by selecting a filter corresponding to the feature closest to it. As a result of learning 100 T1 brain MRI images of HCP which is publicly opened, we showed that the performance improved by up to about 11% compared to the traditional interpolation method.

Multiple Sclerosis Lesion Detection using 3D Autoencoder in Brain Magnetic Resonance Images (3D 오토인코더 기반의 뇌 자기공명영상에서 다발성 경화증 병변 검출)

  • Choi, Wonjune;Park, Seongsu;Kim, Yunsoo;Gahm, Jin Kyu
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.979-987
    • /
    • 2021
  • Multiple Sclerosis (MS) can be early diagnosed by detecting lesions in brain magnetic resonance images (MRI). Unsupervised anomaly detection methods based on autoencoder have been recently proposed for automated detection of MS lesions. However, these autoencoder-based methods were developed only for 2D images (e.g. 2D cross-sectional slices) of MRI, so do not utilize the full 3D information of MRI. In this paper, therefore, we propose a novel 3D autoencoder-based framework for detection of the lesion volume of MS in MRI. We first define a 3D convolutional neural network (CNN) for full MRI volumes, and build each encoder and decoder layer of the 3D autoencoder based on 3D CNN. We also add a skip connection between the encoder and decoder layer for effective data reconstruction. In the experimental results, we compare the 3D autoencoder-based method with the 2D autoencoder models using the training datasets of 80 healthy subjects from the Human Connectome Project (HCP) and the testing datasets of 25 MS patients from the Longitudinal multiple sclerosis lesion segmentation challenge, and show that the proposed method achieves superior performance in prediction of MS lesion by up to 15%.

FDTD Modeling of the Korean Human Head using MRI Images (MRI 영상을 이용한 한국인 인체 두부의 FDTD 모델링)

  • 이재용;명노훈;최명선;오학태;홍수원;김기회
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.4
    • /
    • pp.582-591
    • /
    • 2000
  • In this paper, the Finite-Difference Time-Domain(FDTD) modeling method of the Korean human head is introduced to calculate electromagnetic energy absorption for the human head by mobile phones. After MRI scanning data is obtained, 2 dimensional(2D) segmentation is done from the 2D MRI image data by the semi-automatic method. Then, 3D dense segmentation data with $1mm\times1mm\times1mm$ is constructed from the 2D segmentation data. Using the 3D segmentation data, coarse FDTD models of human head that is tilted arbitrarily to model the condition of tilted usage of mobile phone.

  • PDF

Motion Artifact Reduction Algorithm for Interleaved MRI using Fully Data Adaptive Moving Least Squares Approximation Algorithm (완전 데이터 적응형 MLS 근사 알고리즘을 이용한 Interleaved MRI의 움직임 보정 알고리즘)

  • Nam, Haewon
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.1
    • /
    • pp.28-34
    • /
    • 2020
  • In this paper, we introduce motion artifact reduction algorithm for interleaved MRI using an advanced 3D approximation algorithm. The motion artifact framework of this paper is data corrected by post-processing with a new 3-D approximation algorithm which uses data structure for each voxel. In this study, we simulate and evaluate our algorithm using Shepp-Logan phantom and T1-MRI template for both scattered dataset and uniform dataset. We generated motion artifact using random generated motion parameters for the interleaved MRI. In simulation, we use image coregistration by SPM12 (https://www.fil.ion.ucl.ac.uk/spm/) to estimate the motion parameters. The motion artifact correction is done with using full dataset with estimated motion parameters, as well as use only one half of the full data which is the case when the half volume is corrupted by severe movement. We evaluate using numerical metrics and visualize error images.

MRI Findings of Long-term Survivals after Kasai Portoenterostomy (카사이 수술 후 장기생존환자의 간 자기공명영상 소견)

  • Jung, JiKwang;Jung, Eunyoung;Park, Woo-Hyun;Choi, Soon-Ok
    • Advances in pediatric surgery
    • /
    • v.18 no.1
    • /
    • pp.12-17
    • /
    • 2012
  • The purpose of this study is to analyse clinical impact of specific MRI findings in liver in patients of long-term survivors after Kasai portoenterostomy (KPE). Twenty-eight patients who were underwent KPE were followed up more than 5 years. Macro-regenerative nodule (MRN) and beaded-duct dilatation (BDD) were considered as important findings in liver MRI. The association between these findings in MRI and clinical indicator, serum bilirubin level and history of cholangitis were evaluated. Sixteen patients (57.1%) were shown MRN in liver MRI. Therewere 14 patients(50%) whose MRI showed BDD. Serum total and direct bilirubin were 3.6 mg/dL and 1.8 mg/dL respectively in positive MRN group whereas 1.4 mg/dL and 0.7 mg/dL in negative MRN group (p = 0.427). Serum total and direct bilirubin level were 4.2 mg/dL and 2.1 mg/dL in patients with BDD negative group compare to 1.1 mg/dL and 0.5 mg/dL in BDD positive group (p = 0.281). The odds ratio to have cholangitis in the patient with MRN was 2.3 and 0.53 in patient with BDD in their MRI findings. MRN in liver MRI may suggest high bilirubin level and more chance to have cholangitis, but the findings of BDD may related to low bilirubin level and less change to have cholangitis.

  • PDF

Surgical Strategy of Epilepsy Arising from Parietal and Occipital Lobes (두정엽 및 후두엽 간질에 대한 수술전략)

  • Sim, Byung-Su;Choi, Ha-Young
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.2
    • /
    • pp.222-230
    • /
    • 2000
  • Purpose : Resection of the epileptogenic zone in the parietal and occipital lobes may be relevant although only few studies have been reported. Methods : Eight patients with parietal epilepsy and nine patients with occipital epilepsy were included for this study. Preoperatively, all had video-EEG monitoring with extracranial electrodes, MRI, 3D-surface rendering of MRI using Allegro(ISG Technologies Inc., Toronto, Canada), and PET scans. Sixteen patients underwent invasive recording with subdural grid. Eight had parietal resection including the sensory cortex in two. Seven had partial occipital resection. Two underwent total unilateral occipital lobectomy. The extent of the resection was made based mainly on the data of invasive EEG recordings, MRI, and 3D-surface rendering of MRI, not on the intraoperative electrocorticographic findings as usually done. During resection, electrocortical stimulation was performed on the motor cortex and speech area. Results : Out of eight patients with parietal epilepsy, three had sensory aura, two had gustatory aura, and two had visual aura. Six of nine patients with occipital epilepsy had visual auras. All had complex partial seizures with lateralizing signs in 15 patients. Four had quadrantopsia. One had mild right hemiparesis. Abnormality in MRI was noticed in six out of eight parietal epilepsy and in eight out of nine occipital epilepsy. 3D-surface rendering of MRI visualized volumetric abnormality with geometric spatial relationships adjacent to the normal brain, in all of parietal and occipital epilepsy. Surface EEG recording was not reliable in localizing the epileptogenic zone in any patient. The subdural grid electrodes can be implanted on the core of the structural abnormality in 3D-reconstructed brain. Ictal onset zone was localized accurately by subdural grid EEGs in 16 patients. Motor cortex in nine and sensory speech area in two were identified by electrocortical stimulation. Histopathologic findings revealed cortical dysplasia in 10 patients ; tuberous sclerosis was combined in two, hamartoma and ganglioglioma in one each, and subpial gliosis in six. Eleven patients were seizure free at follow-up of 6 months to 37 months(mean 19.7 months) after surgery. Seizures recurred in two and were unchanged in one. Six produced transient sensory loss and one developed hemiparesis and tactile agnosia. One revealed transient apraxia. Two patients with preoperative quadrantopsia developed homonymous hemianopsia. Conclusion : This study suggests that surgical treatment was relevant in parietal and occipital epilepsies with good surgical outcome, without significant neurologic sequelae. Neuroimaging studies including conventional MRI, 3Dsurface rendering of MRI were necessary in identifying the epileptogenic zone. In particular, 3D-surface rendering of MRI was very helpful in presuming the epileptogenic zone in patients with unidentifiable lesion in the conventional MRI, in planning surgical approach to lesions, and also in making a decision of the extent of the epileptogenic zone in patients with identifiable lesion in conventional MRI. Invasive EEG recording with the subdural grid electrodes helped to confirm a core of the epileptogenic zone which was revealed in 3D-surface rendered brain.

  • PDF

Nonuniformity Correction Scheme Based on 3-dimensional Visualization of MRI Images (MRI 영상의 3차원 가시화를 통한 영상 불균일성 보정 기법)

  • Kim, Hyoung-Jin;Seo, Kwang-Deok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.4
    • /
    • pp.948-958
    • /
    • 2010
  • Human body signals collected by the MRI system are very weak, such that they may be easily affected by either external noise or system instability while being imaged. Therefore, this paper analyzes the nonuniformity caused by a design of the RF receiving coil in a low-magnetic-field MRI system, and proposes an efficient method to improve the image uniformity. In this paper, a method for acquiring 3D bias volume data by using phantom data among various methods for correcting such nonuniformity in MRI image is proposed, such that it is possible to correct various-sized images. It is shown by simulations that images obtained by various imaging methods can be effectively corrected using single bias data.

Visualization and Localization of Fusion Image Using VRML for Three-dimensional Modeling of Epileptic Seizure Focus (VRML을 이용한 융합 영상에서 간질환자 발작 진원지의 3차원적 가시화와 위치 측정 구현)

  • 이상호;김동현;유선국;정해조;윤미진;손혜경;강원석;이종두;김희중
    • Progress in Medical Physics
    • /
    • v.14 no.1
    • /
    • pp.34-42
    • /
    • 2003
  • In medical imaging, three-dimensional (3D) display using Virtual Reality Modeling Language (VRML) as a portable file format can give intuitive information more efficiently on the World Wide Web (WWW). The web-based 3D visualization of functional images combined with anatomical images has not studied much in systematic ways. The goal of this study was to achieve a simultaneous observation of 3D anatomic and functional models with planar images on the WWW, providing their locational information in 3D space with a measuring implement using VRML. MRI and ictal-interictal SPECT images were obtained from one epileptic patient. Subtraction ictal SPECT co-registered to MRI (SISCOM) was performed to improve identification of a seizure focus. SISCOM image volumes were held by thresholds above one standard deviation (1-SD) and two standard deviations (2-SD). SISCOM foci and boundaries of gray matter, white matter, and cerebrospinal fluid (CSF) in the MRI volume were segmented and rendered to VRML polygonal surfaces by marching cube algorithm. Line profiles of x and y-axis that represent real lengths on an image were acquired and their maximum lengths were the same as 211.67 mm. The real size vs. the rendered VRML surface size was approximately the ratio of 1 to 605.9. A VRML measuring tool was made and merged with previous VRML surfaces. User interface tools were embedded with Java Script routines to display MRI planar images as cross sections of 3D surface models and to set transparencies of 3D surface models. When transparencies of 3D surface models were properly controlled, a fused display of the brain geometry with 3D distributions of focal activated regions provided intuitively spatial correlations among three 3D surface models. The epileptic seizure focus was in the right temporal lobe of the brain. The real position of the seizure focus could be verified by the VRML measuring tool and the anatomy corresponding to the seizure focus could be confirmed by MRI planar images crossing 3D surface models. The VRML application developed in this study may have several advantages. Firstly, 3D fused display and control of anatomic and functional image were achieved on the m. Secondly, the vector analysis of a 3D surface model was defined by the VRML measuring tool based on the real size. Finally, the anatomy corresponding to the seizure focus was intuitively detected by correlations with MRI images. Our web based visualization of 3-D fusion image and its localization will be a help to online research and education in diagnostic radiology, therapeutic radiology, and surgery applications.

  • PDF