• Title/Summary/Keyword: 3D MIMO

Search Result 125, Processing Time 0.021 seconds

Interference Management by Vertical Beam Control Combined with Coordinated Pilot Assignment and Power Allocation in 3D Massive MIMO Systems

  • Zhang, Guomei;Wang, Bing;Li, Guobing;Xiang, Fei;lv, Gangming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.2797-2820
    • /
    • 2015
  • In order to accommodate huge number of antennas in a limited antenna size, a large scale antenna array is expected to have a three dimensional (3D) array structure. By using the Active Antenna Systems (AAS), the weights of the antenna elements arranged vertically could be configured adaptively. Then, a degree of freedom (DOF) in the vertical plane is provided for system design. So the three-dimension MIMO (3D MIMO) could be realized to solve the actual implementation problem of the massive MIMO. However, in 3D massive MIMO systems, the pilot contamination problem studied in 2D massive MIMO systems and the inter-cell interference as well as inter-vertical sector interference in 3D MIMO systems with vertical sectorization exist simultaneously, when the number of antenna is not large enough. This paper investigates the interference management towards the above challenges in 3D massive MIMO systems. Here, vertical sectorization based on vertical beamforming is included in the concerned systems. Firstly, a cooperative joint vertical beams adjustment and pilot assignment scheme is developed to improve the channel estimation precision of the uplink with pilots being reused across the vertical sectors. Secondly, a downlink interference coordination scheme by jointly controlling weight vectors and power of vertical beams is proposed, where the estimated channel state information is used in the optimization modelling, and the performance loss induced by pilot contamination could be compensated in some degree. Simulation results show that the proposed joint optimization algorithm with controllable vertical beams' weight vectors outperforms the method combining downtilts adjustment and power allocation.

3-D Multiple-Input Multiple-Output Interferometric ISAR Imaging (3차원 Multiple-Input Multiple-Output 간섭계 ISAR 영상형성기법)

  • Kang, Byung-Soo;Bae, Ji-Hoon;Yang, Eun-Jung;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.6
    • /
    • pp.564-571
    • /
    • 2015
  • In this paper, we propose a multiple-input, multiple-output(MIMO) interferometric radar network system to generate three-dimensional (3-D) MIMO interferometric inverse synthetic aperture radar(InISAR) image. In the MIMO interferometric radar network system, the MIMO InISAR image can be formed by an incoherent summation of multiple bistatic InISAR images that show 3-D scatterers of a target observed at different bistatic interfermetric configurations, respectively. Because bistatic-sccattering physics of a target at different viewpoints are visible in the 3-D MIMO InISAR image, it can provide various scatterering physics properties of a target, and can be used for target classification as a useful feature vector. Simulations validate that our proposed method successfully finds locations of scatterers of a target in MIMO radar interferometric network system.

Hybrid MIMO Antenna for the Mobile Handset (휴대 단말기용 하이브리드 MIMO 안테나)

  • Son, Taeho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.3
    • /
    • pp.78-86
    • /
    • 2013
  • A hybrid MIMO(Multi Input Multi Output) antenna which is operating both a monopole and a IFA(Inverted F Antenna) is designed. It's applied Vlade(Vertical lade) technique to reduce antenna space, and a diagonally fed MIMO antenna is designed on the bare board for the data communication. Return losses due to variables of antenna length are simulated for the design. Antenna for the hexa-frequency band of LTE700, CDMA, GSM, DCS, PCS and WCDMA is designed and implemented. This antenna is satisfied 3:1 VSWR over the whole design band by the measurement of return loss. And average gains and efficiencies were -3.67 ~ -2.53dBi and 42.06 ~ 55.84% for LTE700/CDMA/GSM frequency band, -3.27 ~ -1.21dBi and 47.08 ~ 75.6% for DCS/PCS/WCDMA frequency band. The isolation between 2 antenna that is one of important factors for the MIMO system was measured good performance as -8.14 ~ -25.77dB over the whole service band.

Improvement of Power Efficiency of HPA by the PAPR Reduction and Predistorter in MIMO-OFDM (MIMO-OFDM에서 PAPR 저감 및 사전 왜곡기에 의한 HPA의 전력 효율 개선)

  • Trang Ngo Thi Thu;Kim Nam;Han Tae-Young
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.1
    • /
    • pp.201-208
    • /
    • 2005
  • Tn this paper, we evaluate the peak-to-average power ratio (PAPR) performance in a space-time block code (STBC) multi-input multi-output orthogonal frequency division multiplexing (MIMO-OFDM) system using selected mapping (SLM) and partial transmit sequences (PTS) approaches. SLM and PTS methods are used to decrease the nonlinear distortion and to improve the power efficiency of the nonlinear high power amplifier(HPA) in the MIMO-OFDM system. In simulation result, when compared with the existing MIMO-OFDM system using QPSK, the PTS method reduces the PAPR about 5dB while the SLM method can reduce about 3.5 dB. Also, we find the BER performance of the MIMO-OFDM system with and without the predistorter in front of the HPA. When the predistorter is used, the input back-off (IBO) of 4 dB is required in the PTS method, and IBO of 6 dB in the SLM method to closely conform to the linear amplifier. If the method of improving the PAPR is not used, the value of IBO of 8 dB is required.

  • PDF

Diversity characteristics of four-element ring slot-based MIMO antenna for sub-6-GHz applications

  • Vipul Kaushal;Amit Birwal;Kamlesh Patel
    • ETRI Journal
    • /
    • v.45 no.4
    • /
    • pp.581-593
    • /
    • 2023
  • This paper proposes four-ring slot resonator-based MIMO antennas of 75×150 mm2 without and with CSRR structures in the sub-6-GHz range. These orthogonal-fed antennas have shown diverse characteristics with dual polarization. L-shaped parasitic structures have increased the isolation (i.e., >40 dB) in the single-element antenna over the band of 3.4 GHz-3.8 GHz. A set of three CSRR structures in the MIMO antenna reduced the coupling between antenna ports placed in an inline arrangement and enhanced the isolation from 12 dB to 20 dB and the diversity characteristics. The S-parameters of both MIMO antennas are measured and used to evaluate MIMO parameters like ECC, TARC, MEG, and channel capacity loss. The simulation results show the variations in the gain and directivity on exciting linear and dual polarizations. The diversity performance of the reported MIMO antennas is suitable for 5G applications.

Statistical Characteristic Analysis of the Spatial Channel Model for Performance Evaluation of MIMO Systems (MIMO 송수신 시스템 성능 평가를 위한 공간 채널 모델의 통계적 특성 분석)

  • Shin, Junsik;Suh, Junyeub;Kang, Hosik;Sung, Wonjin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.8
    • /
    • pp.748-757
    • /
    • 2015
  • MIMO systems utilizing multiple antenna transmission and reception is one of the key technologies to enhance the capacity of 5G wireless communications. In order to obtain an appropriate performance evaluation of MIMO techniques, the usage of wireless channel model reflecting spatial channel characteristics is required, such as the 3-dimensional spatial channel model(3D SCM) proposed by 3GPP TR36.873 documentation. In this paper, we implement and verify the channel simulation environment based on 3D SCM, to present and compare the characteristics of UMi and UMa environments. We also apply MIMO transmission to the UMa scenario to investigate the channel correlation among antenna elements with different array distances and to identify the corresponding throughput changes. By evaluating the channel power correlations for randomly distributed users within the sector for different horizontal and vertical antenna distances, we present the statistical characteristics which determine the transmission performance under the SCM environment.

Analysis Microstrip Patch Antenna of MIMO Structure (MIMO 구조의 마이크로스트립 패치 안테나 분석)

  • Kim, Sun-Woong;Park, Jung-Jin;Choi, Dong-You
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.5
    • /
    • pp.944-949
    • /
    • 2015
  • This study proposed a patch antenna with a MIMO structure which is applicable for wireless communication equipment by combining a single patch antenna with a multi port. The proposed MIMO patch antenna was designed through the TRF-45 substrate with a relative permittivity of 4.5, loss tangent equal to 0.0035 and dielectric high of 1.6 mm, and the center frequency of the antenna was 2.45 GHz in the ISM (Industrial Scientific and Medical) band. The proposed MIMO patch antenna had a 500 MHz bandwidth from 2.16 ~ 2.66 GHz and 24.1% fractional bandwidth. The return loss and VSWR were -62.05 dB, 1.01 at the ISM bandwidth of 2.45 GHz. The Wibro band of 2.3 GHz was -17.43 dB, 1.33, the WiFi band of 2.4 GHz was -31.89 dB, 1.05, and the WiMax band of 2.5 GHz was -36.47 dB, 1.03. The radiation patterns included in the bandwidth were directional, and the WiBro band of 2.3 GHzhad a gain of 4.22 dBi, the WiFi band of 2.4 GHz had a gain of 4.12 dBi, the ISM band of 2.45 GHz had a gain of 4.06dBi, and the WiMax band of 2.5 GHz had a gain of 3.9 6dBi.

A Method to Improve Isolation of MIMO Antenna System for Wireless Portable Devices Using Multiple Pairs of L-Slots (다수 쌍의 L-Slot을 이용하여 무선 휴대 단말기용 MIMO 안테나 시스템의 격리도를 향상시키는 방법)

  • Lee, Hyun-Seok;Yoon, Sang-Won;Park, Hyun-Chang;Park, Hyung-Moo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.8
    • /
    • pp.820-825
    • /
    • 2008
  • A method to improve isolation characteristics of internal MIMO antenna systems for wireless portable devices operating in the $2.3{\sim}2.4$ GHz band is presented. The proposed system incorporates multiple pairs of L-slots between the two antennas in the ground plane, which operate like a band-stop filter, suppressing mutual coupling between the antennas and resulting in improved isolation. A MIMO antenna system with 6 pairs of L-slots shows reflection loss of -26.4 dB and isolation of -37.5 dB.

Optimal Planar Array Architecture for Full-Dimensional Multi-user Multiple-Input Multiple-Output with Elevation Modeling

  • Abubakari, Alidu;Raymond, Sabogu-Sumah;Jo, Han-Shin
    • ETRI Journal
    • /
    • v.39 no.2
    • /
    • pp.234-244
    • /
    • 2017
  • Research interest in three-dimensional multiple-input multiple-output (3D-MIMO) beamforming has rapidly increased on account of its potential to support high data rates through an array of strategies, including sector or user-specific elevation beamforming and cell-splitting. To evaluate the full performance benefits of 3D and full-dimensional (FD) MIMO beamforming, the 3D character of the real MIMO channel must be modeled with consideration of both the azimuth and elevation domain. Most existing works on the 2D spatial channel model (2D-SCM) assume a wide range for the distribution of elevation angles of departure (eAoDs), which is not practical according to field measurements. In this paper, an optimal FD-MIMO planar array configuration is presented for different practical channel conditions by restricting the eAoDs to a finite range. Using a dynamic network level simulator that employs a complete 3D SCM, we analyze the relationship between the angular spread and sum throughput. In addition, we present an analysis on the optimal antenna configurations for the channels under consideration.

A Study on the Improvement of MIMO Antenna Isolation for Mobile Applications (휴대 단말기용 MIMO 안테나의 격리도 향상에 관한 연구)

  • Yoon, In-Seop;Yan, Xiao-Jia;Kim, Sang-Uk;Jo, Yun-Hyun;Park, Hyo-Dal
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.9
    • /
    • pp.987-992
    • /
    • 2015
  • In this paper, neutralization line structure have been employed to improve the isolation between the MIMO antenna system. The proposed MIMO antenna size is $116mm{\times}64mm{\times}5mm$ and designed on FR-4(${\varepsilon}r=4.4$) ground substrate. Neutralization line was applied to enhance isolation between the each antenna elements. The fabricated antenna satisfied a VSWR below 3 in LTE band B13 and the isolation between the MIMO antenna system is presented below -15dB. On the H-plane, antenna shows an omnidirectional pattern. In LTE band B13, the antenna presents a gain of a -2.6dBi ~-1.18dBi and radiation efficiency of 33.49% ~ 46.45%. Comparing measurement result with the outcome of simulation, the proposed MIMO antenna is expected to be applied for mobile application.