• 제목/요약/키워드: 3D Lidar

Search Result 147, Processing Time 0.03 seconds

Common Optical System for the Fusion of Three-dimensional Images and Infrared Images

  • Kim, Duck-Lae;Jung, Bo Hee;Kong, Hyun-Bae;Ok, Chang-Min;Lee, Seung-Tae
    • Current Optics and Photonics
    • /
    • v.3 no.1
    • /
    • pp.8-15
    • /
    • 2019
  • We describe a common optical system that merges a LADAR system, which generates a point cloud, and a more traditional imaging system operating in the LWIR, which generates image data. The optimum diameter of the entrance pupil was determined by analysis of detection ranges of the LADAR sensor, and the result was applied to design a common optical system using LADAR sensors and LWIR sensors; the performance of these sensors was then evaluated. The minimum detectable signal of the $128{\times}128-pixel$ LADAR detector was calculated as 20.5 nW. The detection range of the LADAR optical system was calculated to be 1,000 m, and according to the results, the optimum diameter of the entrance pupil was determined to be 15.7 cm. The modulation transfer function (MTF) in relation to the diffraction limit of the designed common optical system was analyzed and, according to the results, the MTF of the LADAR optical system was 98.8% at the spatial frequency of 5 cycles per millimeter, while that of the LWIR optical system was 92.4% at the spatial frequency of 29 cycles per millimeter. The detection, recognition, and identification distances of the LWIR optical system were determined to be 5.12, 2.82, and 1.96 km, respectively.

Quality Enhancement of 3D Volumetric Contents Based on 6DoF for 5G Telepresence Service

  • Byung-Seo Park;Woosuk Kim;Jin-Kyum Kim;Dong-Wook Kim;Young-Ho Seo
    • Journal of Web Engineering
    • /
    • v.21 no.3
    • /
    • pp.729-750
    • /
    • 2022
  • In general, the importance of 6DoF (degree of freedom) 3D (dimension) volumetric contents technology is emerging in 5G (generation) telepresence service, Web-based (WebGL) graphics, computer vision, robotics, and next-generation augmented reality. Since it is possible to acquire RGB images and depth images in real-time through depth sensors that use various depth acquisition methods such as time of flight (ToF) and lidar, many changes have been made in object detection, tracking, and recognition research. In this paper, we propose a method to improve the quality of 3D models for 5G telepresence by processing images acquired through depth and RGB cameras on a multi-view camera system. In this paper, the quality is improved in two major ways. The first concerns the shape of the 3D model. A method of removing noise outside the object by applying a mask obtained from a color image and a combined filtering operation to obtain the difference in depth information between pixels inside the object were proposed. Second, we propose an illumination compensation method for images acquired through a multi-view camera system for photo-realistic 3D model generation. It is assumed that the three-dimensional volumetric shooting is done indoors, and the location and intensity of illumination according to time are constant. Since the multi-view camera uses a total of 8 pairs and converges toward the center of space, the intensity and angle of light incident on each camera are different even if the illumination is constant. Therefore, all cameras take a color correction chart and use a color optimization function to obtain a color conversion matrix that defines the relationship between the eight acquired images. Using this, the image input from all cameras is corrected based on the color correction chart. It was confirmed that the quality of the 3D model could be improved by effectively removing noise due to the proposed method when acquiring images of a 3D volumetric object using eight cameras. It has been experimentally proven that the color difference between images is reduced.

OZONE MEASUREMENTS IN THE STRATOSPHERE FROM KSR420S-1 AND -2 (과학 1, 2호 로켓 실험을 통한 성층권 오존량 측정)

  • Lee, K. Y.;Lee, D. H.;Kim, J.;Park, C. J.;Cho, H. K.
    • Journal of Astronomy and Space Sciences
    • /
    • v.11 no.1
    • /
    • pp.53-70
    • /
    • 1994
  • The Korean sounding rockets(KSR420S-1, -2) equipped with ozone detectors have b3en launched at An-heung, Chungchungnam-do, on June 4 and September 1, 1993, respectively. The ozone detector is used to measure the attenuation of solar UV radiation for various frequency bands in the stratosphere, to obtain vertical profiles of the ozone number density in the stratosphere. They confirm that the maximum ozone densities occur near 25 km, which is quite consistent with the mean value in the mid-latitude region. Our results from KSR420S-1 and -2 are compared with the other observation data from the Dobson spectrophotometer at Yonsei Univ., the LIDAR at Kyunghee Univ., the SBUV from Nimbus satellite, and the TOVS from NOAA satellite, which were performed simultaneously with the sounding rocket experiments.

  • PDF

A study on Optimal Sensor Placement using 3D information of LiDAR (LiDAR자료의 3차원 정보를 이용한 최적 Sensor 위치 선정 가능성 분석)

  • Yu, Han-Seo;Lee, Woo-Kyun;Choi, Sung-Ho;Kang, Byoung-Jin
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2009.04a
    • /
    • pp.244-245
    • /
    • 2009
  • 일반적으로 LiDAR(Light Detection And Ranging)의 자료로부터 3차원 위치정보와 속성 정보를 취득하여 활용 하는 연구가 많이 진행되고 있다. 본 연구에서는 Grid($100m{\times}100m$) 기반인 2차원적 Grid Point를 통해 Sensor Field를 정하고 LiDAR의 3차원적 좌표정보를 이용하여 최적 센서 위치를 선정하고 중간에 장애물(Obstacle)이 존재하는 경우 또한 알고리즘을 통해 최적위치인 Grid point를 선정하였다. 알고리즘은 3가지 측면을 고려하여 분류하였다. 첫째 장애물이 없는(Non Obstacle) 2차원적인 경우, 둘째 장애물이 존재(Obstacle)하는 2차원적인 경우, 셋째 장애물이 존재(Obstacle)하며 3차원적인 알고리즘을 고려하였다. 향후 연구에서는 LiDAR를 직접 적용하여 최적 선정 지역을 도출하여 알고리즘을 적용할 것이다.

  • PDF

Development Trends and Expectation of Three-Dimensional Imager based on LIDAR technology for Autonomous Smart Car Navigation (자율주행차 및 스마트카용 라이다 3차원 영상센서 기술개발 동향 및 전망)

  • Choi, G.D.;Han, M.H.;Song, M.H.;Seo, H.S.;Kim, C.;Hong, S.;Mheen, B.
    • Electronics and Telecommunications Trends
    • /
    • v.31 no.4
    • /
    • pp.86-97
    • /
    • 2016
  • 빛의 반사시간 및 산란정보를 측정하여 기상정보를 수집하던 초기 라이다 기술은 실내외 3차원 정보를 확보하는 센서 기술로 응용 영역을 확대하고 있다. 특히 최근에는 자율주행차/스마트카를 중심으로 차량/보행자의 안전과 고도화된 자율주행 성능을 위하여 차량 주변 환경에 대한 3차원 좌표를 고속으로 획득하는 라이다 기술의 중요성이 부각되고 있으며, 이에 따라 관련 기술에 대한 이해와 동향파악이 필요하다. 이에 본고에서는 차량에 적용될 수 있는 라이다 기반 3차원 영상센서 기술 전반에 대한 리뷰를 진행하고, 자율주행차/스마트카 시장에서 핵심이슈 및 기술별 대응 특징을 소개한다. 아울러 3차원 센서기술의 글로벌 경쟁상황을 기반으로 향후 차량용 라이다 기술의 발전방향을 전망해 본다.

  • PDF

3D Wetlands Classification Mapping of Eulsukdo Area Using LiDAR Data (LiDAR 자료를 이용한 을숙도 지역 3차원 습지 구분도 제작)

  • Lee, Jae-One;Yi, Gi-Chul;Kim, Yong-Suk;We, Kwang-Jae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.6
    • /
    • pp.639-647
    • /
    • 2009
  • In line with the rapid settlement of information society, the demand for geospatial information and its applications are dramatically increasing. The Project of National Geographic Information System(NGIS) is actively on going to meet up-to-dateness and accuracy of geospatial data. It is fact that the public interest in environmental issues is increasing than ever in accordance with the restoration of the four major rivers, core project of Green New Deal Policy, and the event of the Ramsar General Meeting. Because the Nakdong River Estuary is a place of great importance in both aspects of wetland and environment conservation, a variety of researches related to this area are progressing. Although artificial developments and natural phenomena are rapidly changing the topography and ecosystem of this area, the effort to build topographic DB for change monitoring is very slow. This study describes a Lidar surveying project over the restored wetland Eulsukdo, the southermost part of the Nakdong River, to establish precise topographic DB throughout producing 3D topographical maps and wetland classification maps. The results of this study will make a large contribution to the systematic maintenance and management for the restored Eulsukdo wetland.

A Method development of Power Line Location and 3D Modeling using LiDAR Data (라이다 데이터를 이용한 송전선로 위치 추출 및 3차원 모델링 기법 개발)

  • Kim, Eun-Young;Kim, Seong-Yong;Lee, Kang-Won
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.389-393
    • /
    • 2007
  • There has been many researches using LiDAR(Light Detection And Ranging) data. There has been many other researches through out the world using the 3 dimensional spatial data in various fields. In this research, Using lidar data and digital images, we have extracted the position of the power-transmission line and created 3 dimensional models. The presented method is more efficient than field surveying and it can also be used lot monitoring change in the environment

  • PDF

Study on terrestrial LIDAR transmitter designed to improve accuracy (측량용 레이저 스캐너의 정밀도 개선을 위한 송신부설계)

  • Yoo, Hyun-Kuk;Jeong, Jung-Yeon;Oh, Dong-Geun;Kim, Jae-Soon
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2009.04a
    • /
    • pp.41-48
    • /
    • 2009
  • Laser diode is used as a crucial part for minimization of terrestrial 3D Laser Scanner. But it has certain limitations such as oval beam shape and inevitable astigmatism. In order to realize a parallel light with beam divergence below 1 mrad, These problems of laser diode can be solved through beam shaping by Pinhole and Aperture. Finally, this study could materialize a collimated beam with 0.3 mrad beam divergence angle and 3mm diameter, that performance and checked by using real manufacture.

  • PDF

Aerial Object Detection and Tracking based on Fusion of Vision and Lidar Sensors using Kalman Filter for UAV

  • Park, Cheonman;Lee, Seongbong;Kim, Hyeji;Lee, Dongjin
    • International journal of advanced smart convergence
    • /
    • v.9 no.3
    • /
    • pp.232-238
    • /
    • 2020
  • In this paper, we study on aerial objects detection and position estimation algorithm for the safety of UAV that flight in BVLOS. We use the vision sensor and LiDAR to detect objects. We use YOLOv2 architecture based on CNN to detect objects on a 2D image. Additionally we use a clustering method to detect objects on point cloud data acquired from LiDAR. When a single sensor used, detection rate can be degraded in a specific situation depending on the characteristics of sensor. If the result of the detection algorithm using a single sensor is absent or false, we need to complement the detection accuracy. In order to complement the accuracy of detection algorithm based on a single sensor, we use the Kalman filter. And we fused the results of a single sensor to improve detection accuracy. We estimate the 3D position of the object using the pixel position of the object and distance measured to LiDAR. We verified the performance of proposed fusion algorithm by performing the simulation using the Gazebo simulator.

A Study for the Border line Extraction technique of City Spatial Building by LiDAR Data (LiDAR 데이터와 항공사진의 통합을 위한 사각 빌딩의 경계점 설정)

  • Yeon, Sang-Ho;Lee, Young-Wook
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.27-29
    • /
    • 2007
  • The visual implementation of 3-dimensional national environment is focused by the requirement and importance in the fields such as, national development plan, telecommunication facility deployment plan, railway construction, construction engineering, spatial city development, safety and disaster prevention engineering. The currently used DEM system using contour lines, which embodies national geographic information based on the 2-D digital maps and facility information has limitation in implementation in reproducing the 3-D spatial city. Moreover, this method often neglects the altitude of the rail way infrastructure which has narrow width and long length. There it is needed to apply laser measurement technique in the spatial target object to obtain accuracy. Currently, the LiDAR data which combines the laser measurement skill and GPS has been introduced to obtain high resolution accuracy in the altitude measurement. In this paper, we first investigate the LiDAR based researches in advanced foreign countries, then we propose data a generation scheme and an algorithm for the optimal manage and synthesis of railway facility system in our 3-D spatial terrain information. For this object, LiDAR based height data transformed to DEM, and the realtime unification of the vector via digital image mapping and raster via exactness evaluation is transformed to make it possible to trace the model of generated 3-dimensional railway model with long distance for 3D tract model generation.

  • PDF