• Title/Summary/Keyword: 3D Laser Scanning Technology

Search Result 118, Processing Time 0.028 seconds

A study on the core technologies for industrial type digital 3D SFF system

  • Kim, Dong-Soo;An, Young-Jin;Kim, Sung-Jon;Choi, Byung-Oh;Lim, Hyun-Eui
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2170-2174
    • /
    • 2005
  • Selective Laser Sintering (SLS) is a useful rapid prototyping technique for the manufacture of three dimensional (3D) solid objects directly from a scanning data. A new approach called a Selective Multi-Laser Sintering (SMLS) system has been developed at Korea Institute Machinery & Materials (KIMM) as an industrial type SFFS. This SMLS machine is built with a frame, heaters, nitrogen supply part, laser system. This system uses the dual laser and 3D scanner made in $Solutionix^{TM}$ to improve the precision and speed for large objects. The three-dimensional solid objects are made of polyamide powder. The investigation on each part of SMLS system is performed to determine the proper theirs design and the effect of experimental parameters on making the 3D objects. The temperature of the system has a great influence on sintering the polymer. Because the stability of the powder temperature prevents the deformation of each layer, the controls of the temperature in both the system and the powders are very important during the process. Therefore, we simulated the temperature distribution of build room using the temperature analysis with ANSYS program. Selected radiant heater is used to raise temperature of powder to melting point temperature. The laser parameters such as scan spacing, scan speed, laser power and laser delay time affect the production the 3D objects too. The combination of the slow scan speed and the high laser power shows the good results without the layer curling. The work is under way to evaluate the effect of experimental parameters on process and to produce the various objects. We are going to experiment continuously to improve the size accuracy and surface roughness.

  • PDF

A Study on the COntour Machining of Text using CNC Laser Machine (CNC레이저 가공기를 이용한 활자체 가공에 관한 연구)

  • 구영회
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.554-559
    • /
    • 1999
  • The purpose of this study is the machining of texture shapes by the contour fitting data. The hardware of the system comprises PC and scanning system, CO2 laser machine. There are four steps, (1) text image loading using scanning shapes or 2D image files, (2) generation of contour fitting data by the line and arc, cubic Bezier curve, (3) generation of NC code from the contouring fitting data, (4) machining by the DNC system. It is developed a software package, with which can conduct a micro CAM system of CNC laser machine in the PC without economical burden.

  • PDF

System Design and Performance Analysis of 3D Imaging Laser Radar for the Mapping Purpose (맵핑용 3차원 영상 레이저 레이다의 시스템 설계 및 성능 분석)

  • La, Jongpil;Ko, Jinsin;Lee, Changjae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.90-95
    • /
    • 2014
  • The system design and the system performance analysis of 3D imaging laser radar system for the mapping purpose is addressed in this article. For the mapping, a push-bloom scanning method is utilized. The pulsed fiber laser with high pulse energy and high pulse repetition rate is used for the light source of laser radar system. The high sensitive linear mode InGaAs avalanche photo-diode is used for the laser receiver module. The time-of-flight of laser pulse from the laser to the receiver is calculated by using high speed FPGA based signal processing board. To reduce the walk error of laser pulse regardless of the intensity differences between pulses, the time of flight is measured from peak to peak of laser pulses. To get 3D image with a single pixel detector, Risley scanner which stirs the laser beam in an ellipsoidal pattern is used. The system laser energy budget characteristics is modeled using LADAR equation, from which the system performances such as the pulse detection probability, false alarm and etc. are analyzed and predicted. The test results of the system performances are acquired and compared with the predicted system performance. According to test results, all the system requirements are satisfied. The 3D image which was acquired by using the laser radar system is also presented in this article.

The Study on Reconnaissance Surveying Using Terrestrial Laser Scanner (지상 라이다를 활용한 현황측량 연구)

  • Lee, In-Su;Kang, Sang-Gu
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.3 s.37
    • /
    • pp.79-86
    • /
    • 2006
  • Nowadays 3D terrestrial laser scanners record high precision three-dimensional coordinates of numerous points on an object surface in a short period of time. So terrestrial laser scanner is applied to a wide variety of fields including geodesy, and civil engineering, archaeology and architecture, and emergency service and defence, etc. This study deals with the potential application of terrestrial laser scanner in the reconnaissance surveying. The results shows that terrestrial laser scanner is possible to extract the linear features and the positioning accuracy of objects measured by total station surveying is comparative to that by terrestrial laser scanner. Thereafter, it is expected that the potential applications of terrestrial laser scanning will be more increased by combining terrestrial laser scanners with airborne LiDAR (Light Detection And Ranging) and photogrammetric technology.

  • PDF

Intravital Laser-scanning Two-photon and Confocal Microscopy for Biomedical Research

  • Moon, Jieun;Kim, Pilhan
    • Medical Lasers
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • Intravital microscopy is a high-resolution imaging technique based on laser-scanning two-photon and confocal microscopy, which allows dynamic 3D cellular-level imaging of various biological processes in a living animal in vivo. This unique capability allows biomedical researchers to directly verify a hypothesis in a natural in vivo microenvironment at the cellular level in a physiological setting. During the last decade, intravital microscopy has become an indispensable technique in several fields of biomedical sciences such as molecular and cell biology, immunology, neuroscience, developmental, and tumor biology. The most distinct advantage of intravital microscopy is its capability to provide a longitudinal view of disease progression at the cellular-level with repeated intravital imaging of a single animal over time by saving the images after each session.

A Study on Electrostatic Powder Coating for 3D Scanning of Diffused Surfaces (난반사 표면의 3D 스캐닝을 위한 정전분말코팅 연구)

  • Maeng, Heeyoung;Lee, Myoung Sang
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.56-62
    • /
    • 2015
  • Using an optical 3D scanning device to collect data from a diffused reflection surface is very difficult. To solve this problem, there are many applications including a spray-type developer and silicon molds. However, using a developer can cause chemical reactions between objects and particles of the developer and uneven surfaces on the object. To overcome these problems, we suggest an electrostatic powder coating method for even coating of particles onto surfaces for collecting 3D shape data. We have developed an automatic, electrostatic powder-coating machine and performed three different experiments to compare this system with a laser interferometer and a T-scan 3D scanner. As a result, we could ascertain the various characteristics of this new method, including good sensitivity for the various surface states of the bare surface, developer, and electrostatic powder coating. Finally, we verified the outstanding scanning performance and were able to demonstrate that this method achieves quality than traditional methods.

3D Modeling of Both Exterior and Interior of Traditional Architectures by Terrestrial Laser Scanning at Multi-Stations (다중 지점 지상레이저스캐닝에 의한 전통 건축물의 내부와 외부의 3차원 모델링)

  • LEE, Jin-Duk;BHANG, Kon-Joon;Schuhr, Walter
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.4
    • /
    • pp.127-135
    • /
    • 2021
  • The purpose of this research is to present about a series of processes for 3D model generation from scan data of two types of Korean styled architectures, namely, a pavilion and a house, which were acquired with the terrestrial LiDAR and evaluate a 3D surveying method to document digitally the traditional buildings, cultural properties, archeological sites, etc. Since most ancient buildings and cultural assets which require digital documentation by the terrestrial laser scanner usually need to acquire data from multi-directions. Therefore this paper suggested a process of acquiring and integrating data from mult-stations around the object. Also we presented a way for reconstructing automatically at once both the interior and exterior surfaces of buildings from laser scan data.

Surface flatness and distortion inspection of precast concrete elements using laser scanning technology

  • Wang, Qian;Kim, Min-Koo;Sohn, Hoon;Cheng, Jack C.P.
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.601-623
    • /
    • 2016
  • Precast concrete elements are widely used in the construction of buildings and civil infrastructures as they provide higher construction quality and requires less construction time. However, any abnormalities in precast concrete surfaces such as non-flatness or distortion, can influence the erection of the elements as well as the functional performance of the connections between elements. Thus, it is important to undertake surface flatness and distortion inspection (SFDI) on precast concrete elements before their delivery to the construction sites. The traditional methods of SFDI which are conducted manually or by contact-type devices are, however, time-consuming, labor-intensive and error-prone. To tackle these problems, this study proposes techniques for SFDI of precast concrete elements using laser scanning technology. The proposed techniques estimate the $F_F$ number to evaluate the surface flatness, and estimate three different measurements, warping, bowing, and differential elevation between adjacent elements, to evaluate the surface distortion. The proposed techniques were validated by experiments on four small scale test specimens manufactured by a 3D printer. The measured surface flatness and distortion from the laser scanned data were compared to the actual ones, which were obtained from the designed surface geometries of the specimens. The validation experiments show that the proposed techniques can evaluate the surface flatness and distortion effectively and accurately. Furthermore, scanning experiments on two actual precast concrete bridge deck panels were conducted and the proposed techniques were successfully applied to the scanned data of the panels.

Development of Digital 3D Real Object Duplication System and Process Technology (디지털 3차원 실물복제기 시스템 및 공정기술 개발)

  • Kim D.S.;An Y.J.;Lee W.H.;Choi B.O.;Chang M.H.;Baek Y.J.;Choi K.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.732-737
    • /
    • 2005
  • Distal 3D Real Object Duplication System(RODS) consists of 3D Scanner and Solid Freeform Fabrication System(SFFS). It is a device to make three-dimensional objects directly from the drawing or the scanning data. In this research, we developed an office type SFFS based on Three Dimensional Printing Process and a industrial SFFS using Dual Laser. An office type SFFS applied sliding mode control with sliding perturbation observer(SMCSPO) algorithm for control of this system. And we measured process variables about droplet diameter measurement and powder bed formation etc. through experiments. Also, in order to develop more elaborate and speedy system for large objects than existing SLS process, this study applies a new Selective Multi-Laser Sintering(SMLS) process and 3-axis dynamic Focusing Scanner for scanning large area instead of the existing $f\theta$ lens. In this process, the temperature has a great influence on sintering of the polymer. Also the laser parameters are considered like that laser beam power, scan speed, scan spacing. Now, this study is in progress to eveluate the effect of experimental parameters on the sintering process.

  • PDF

Analyses of Existing Tunnel Liner Behaviors Caused by Excavation of Upper Layer with Using Laser Scanning Technology (레이저 스캐닝 기술을 이용한 기존 터널 상부굴착에 따른 라이닝 거동 분석)

  • Park, Tae-Soo;Lee, Seung-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.10
    • /
    • pp.29-36
    • /
    • 2015
  • This paper deals with inspecting and monitoring cracks developed on a subway tunnel liner during the construction of temporary supports and excavation. The cracks have developed near a enlarged part of the tunnel. Several measurements, crack gauge, internal displacement measurement, 3-D laser scanner have been conducted to monitor the progress of cracks and effects of them on the tunnel. Local measurement, additional propagation of cracks and deformation of liner, have been conducted by crack gauge and internal displacement measurement. Global inspection has been conducted by 3-D laser scanner. From the scanned data, occurrence of global deformation of tunnel and rail has been evaluated. Because of limited sequence of construction at the ground, no apparent deformation of crack propagation has been measured. As presented in this paper, deformation of tunnel liner and effects of rail need to be investigated in view of local and global aspects.