• Title/Summary/Keyword: 3D Image Segmentation

Search Result 263, Processing Time 0.033 seconds

The Pattern Segmentation of 3D Image Information Using FCM (FCM을 이용한 3차원 영상 정보의 패턴 분할)

  • Kim Eun-Seok;Joo Ki-See
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.5
    • /
    • pp.871-876
    • /
    • 2006
  • In this thesis, to accurately measure 3D face information using the spatial encoding patterns, the new algorithm to segment the pattern images from initial face pattern image is proposed. If the obtained images is non-homogeneous texture and ambiguous boundary pattern, the pattern segmentation is very difficult. Furthermore. the non-encoded areas by accumulated error are occurred. In this thesis, the FCM(fuzzy c-means) clustering method is proposed to enhance the robust encoding and segmentation rate under non-homogeneous texture and ambiguous boundary pattern. The initial parameters for experiment such as clustering class number, maximum repetition number, and error tolerance are set with 2, 100, 0.0001 respectively. The proposed pattern segmentation method increased 8-20% segmentation rate with conventional binary segmentation methods.

A Study on 3D CT Image Segmentation and Registration of Mandibular First Premolar (하학 제 1 소구치의 3 차원 CT 영상 분할 및 정합 연구)

  • Jin K.C.;Chun K.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.175-176
    • /
    • 2006
  • The aim of the 3D medical imaging is to facilitate the creation of clinically usable image-based algorithm. Clinically usable imaging algorithm for image analysis requires a high degree of interaction to verify and correct results from registration algorithms, such as the Insight Toolkit (ITK) and the Visualization Toolkit (VTK) which are the class libraries. ITK provides segmentation algorithms and VTK has powerful 3D visualization. However, to apply those libraries to the medical images such as Computerized Tomography (CT), the algorithm based on the interactive construction and modification of data objects are necessary. In this paper we showed the 3D registration about mandibular premolar of human teeth acquired by micro-CT scanner. Also, we used the ITK to find the contour of pulp layer of premolar, furthermore, the 3D imaging was visualized with VTK designed to create one kind of view on the data of 3D visualization. Finally, we evaluated that the volume model of pulp layer would be useful for the tooth morphology in dental medicine.

  • PDF

Segmentation of MR Brain Image Using Scale Space Filtering and Fuzzy Clustering (스케일 스페이스 필터링과 퍼지 클러스터링을 이용한 뇌 자기공명영상의 분할)

  • 윤옥경;김동휘;박길흠
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.4
    • /
    • pp.339-346
    • /
    • 2000
  • Medical image is analyzed to get an anatomical information for diagnostics. Segmentation must be preceded to recognize and determine the lesion more accurately. In this paper, we propose automatic segmentation algorithm for MR brain images using T1-weighted, T2-weighted and PD images complementarily. The proposed segmentation algorithm is first, extracts cerebrum images from 3 input images using cerebrum mask which is made from PD image. And next, find 3D clusters corresponded to cerebrum tissues using scale filtering and 3D clustering in 3D space which is consisted of T1, T2, and PD axis. Cerebrum images are segmented using FCM algorithm with its initial centroid as the 3D cluster's centroid. The proposed algorithm improved segmentation results using accurate cluster centroid as initial value of FCM algorithm and also can get better segmentation results using multi spectral analysis than single spectral analysis.

  • PDF

Pulmonary Vessels Segmentation and Refinement On the Chest CT Images (흉부 CT 영상에서 폐 혈관 분할 및 정제)

  • Kim, Jung-Chul;Cho, Joon-Ho;Hwang, Hyung-Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.188-194
    • /
    • 2013
  • In this paper, we proposed a new method for pulmonary vessels image segmentation and refinement from pulmonary image. Proposed method consist of following five steps. First, threshold estimation is performed by polynomial regression analysis of histogram variation rate of the pulmonary image. Second, segmentation of pulmonary vessels object is performed by density-based segmentation method based on estimated threshold in first step. Third, 2D connected component labeling method is applied to segmented pulmonary vessels. The seed point of both side diaphragms is determined by eccentricity and size of component. Fourth step is diaphragm extraction by 3D region growing method at the determined seed point. Finally, noise cancelation of pulmonary vessels image is performed by 3D connected component labeling method. The experimental result is showed accurately pulmonary vessels image segmentation, the diaphragm extraction and the noise cancelation of the pulmonary vessels image.

Artificial Intelligence Image Segmentation for Extracting Construction Formwork Elements (거푸집 부재 인식을 위한 인공지능 이미지 분할)

  • Ayesha Munira, Chowdhury;Moon, Sung-Woo
    • Journal of KIBIM
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • Concrete formwork is a crucial component for any construction project. Artificial intelligence offers great potential to automate formwork design by offering various design options and under different criteria depending on the requirements. This study applied image segmentation in 2D formwork drawings to extract sheathing, strut and pipe support formwork elements. The proposed artificial intelligence model can recognize, classify, and extract formwork elements from 2D CAD drawing image and training and test results confirmed the model performed very well at formwork element recognition with average precision and recall better than 80%. Recognition systems for each formwork element can be implemented later to generate 3D BIM models.

Segmentation of Multispectral MRI Using Fuzzy Clustering (퍼지 클러스터링을 이용한 다중 스펙트럼 자기공명영상의 분할)

  • 윤옥경;김현순;곽동민;김범수;김동휘;변우목;박길흠
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.333-338
    • /
    • 2000
  • In this paper, an automated segmentation algorithm is proposed for MR brain images using T1-weighted, T2-weighted, and PD images complementarily. The proposed segmentation algorithm is composed of 3 step. In the first step, cerebrum images are extracted by putting a cerebrum mask upon the three input images. In the second step, outstanding clusters that represent inner tissues of the cerebrum are chosen among 3-dimensional(3D) clusters. 3D clusters are determined by intersecting densely distributed parts of 2D histogram in the 3D space formed with three optimal scale images. Optimal scale image is made up of applying scale space filtering to each 2D histogram and searching graph structure. Optimal scale image best describes the shape of densely distributed parts of pixels in 2D histogram and searching graph structure. Optimal scale image best describes the shape of densely distributed parts of pixels in 2D histogram. In the final step, cerebrum images are segmented using FCM algorithm with its initial centroid value as the outstanding clusters centroid value. The proposed cluster's centroid accurately. And also can get better segmentation results from the proposed segmentation algorithm with multi spectral analysis than the method of single spectral analysis.

  • PDF

FDTD Modeling of the Korean Human Head using MRI Images (MRI 영상을 이용한 한국인 인체 두부의 FDTD 모델링)

  • 이재용;명노훈;최명선;오학태;홍수원;김기회
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.4
    • /
    • pp.582-591
    • /
    • 2000
  • In this paper, the Finite-Difference Time-Domain(FDTD) modeling method of the Korean human head is introduced to calculate electromagnetic energy absorption for the human head by mobile phones. After MRI scanning data is obtained, 2 dimensional(2D) segmentation is done from the 2D MRI image data by the semi-automatic method. Then, 3D dense segmentation data with $1mm\times1mm\times1mm$ is constructed from the 2D segmentation data. Using the 3D segmentation data, coarse FDTD models of human head that is tilted arbitrarily to model the condition of tilted usage of mobile phone.

  • PDF

A Novel Horizontal Disparity Estimation Algorithm Using Stereoscopic Camera Rig

  • Ramesh, Rohit;Shin, Heung-Sub;Jeong, Shin-Il;Chung, Wan-Young
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.1
    • /
    • pp.83-88
    • /
    • 2011
  • Abstract. Image segmentation is always a challenging task in computer vision as well as in pattern recognition. Nowadays, this method has great importance in the field of stereo vision. The disparity information extracting from the binocular image pairs has essential relevance in the fields like Stereoscopic (3D) Imaging Systems, Virtual Reality and 3D Graphics. The term 'disparity' represents the horizontal shift between left camera image and right camera image. Till now, many methods are proposed to visualize or estimate the disparity. In this paper, we present a new technique to visualize the horizontal disparity between two stereo images based on image segmentation method. The process of comparing left camera image with right camera image is popularly known as 'Stereo-Matching'. This method is used in the field of stereo vision for many years and it has large contribution in generating depth and disparity maps. Correlation based stereo-matching are used most of the times to visualize the disparity. Although, for few stereo image pairs it is easy to estimate the horizontal disparity but in case of some other stereo images it becomes quite difficult to distinguish the disparity. Therefore, in order to visualize the horizontal disparity between any stereo image pairs in more robust way, a novel stereo-matching algorithm is proposed which is named as "Quadtree Segmentation of Pixels Disparity Estimation (QSPDE)".

Non-Photorealistic Rendering Using CUDA-Based Image Segmentation (CUDA 기반 영상 분할을 사용한 비사실적 렌더링)

  • Yoon, Hyun-Cheol;Park, Jong-Seung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.11
    • /
    • pp.529-536
    • /
    • 2015
  • When rendering both three-dimensional objects and photo images together, the non-photorealistic rendering results are in visual discord since the two contents have their own independent color distributions. This paper proposes a non-photorealistic rendering technique which renders both three-dimensional objects and photo images such as cartoons and sketches. The proposed technique computes the color distribution property of the photo images and reduces the number of colors of both photo images and 3D objects. NPR is performed based on the reduced colormaps and edge features. To enhance the natural scene presentation, the image region segmentation process is preferred when extracting and applying colormaps. However, the image segmentation technique needs a lot of computational operations. It takes a long time for non-photorealistic rendering for large size frames. To speed up the time-consuming segmentation procedure, we use GPGPU for the parallel computing using the GPU. As a result, we significantly improve the execution speed of the algorithm.

Three-dimensional Active Shape Model for Object Segmentation (관심 객체 분할을 위한 삼차원 능동모양모델 기법)

  • Lim, Seong-Jae;Ho, Yo-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.335-336
    • /
    • 2006
  • In this paper, we propose an active shape image segmentation method for three-dimensional(3-D) medical images using a generation method of the 3-D shape model. The proposed method generates the shape model using a distance transform and a tetrahedron method for landmarking. After generating the 3-D model, we extend the training and segmentation processes of 2-D active shape model(ASM) and improve the searching process. The proposed method provides comparative results to 2-D ASM, region-based or contour-based methods. Experimental results demonstrate that this algorithm is effective for a semi-automatic segmentation method of 3-D medical images.

  • PDF