• Title/Summary/Keyword: 3D Image Reconstruction

Search Result 591, Processing Time 0.027 seconds

Analysis of Geometrical Relations of 2D Affine-Projection Images and Its 3D Shape Reconstruction (정사투영된 2차원 영상과 복원된 3차원 형상의 기하학적 관계 분석)

  • Koh, Sung-Shik;Zin, Thi Thi;Hama, Hiromitsu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.4 s.316
    • /
    • pp.1-7
    • /
    • 2007
  • In this paper, we analyze geometrical relations of 3D shape reconstruction from 2D images taken under anne projection. The purpose of this research is to contribute to more accurate 3-D reconstruction under noise distribution by analyzing geometrically the 2D to 3D relationship. In situation for no missing feature points (FPs) or no noise in 2D image plane, the accurate solution of 3D shape reconstruction is blown to be provided by Singular Yalue Decomposition (SVD) factorization. However, if several FPs not been observed because of object occlusion and image low resolution, and so on, there is no simple solution. Moreover, the 3D shape reconstructed from noise-distributed FPs is peturbed because of the influence of the noise. This paper focuses on analysis of geometrical properties which can interpret the missing FPs even though the noise is distributed on other FPs.

Analysis of 3D reconstructed images based on signal model of plane-based computational integral imaging reconstruction technique (평면기반 컴퓨터 집적 영상 복원 기술의 신호모델을 이용한 3D 복원 영상 분석)

  • Shin, Dong-Hak;Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.1
    • /
    • pp.121-126
    • /
    • 2009
  • Plane-based computational integral imaging (CIIR) provides the reconstruction of depth-dependent 3D plane images. However, it has problem degrading the resolution of reconstructed images due to the artifact noise according to the depth. In this paper, to overcome this problem, a signal model for plane-based CIIR is explain. Also the compensation process is introduced to remove the noise caused from CIIR. Computational experiments show that we analyze the characteristics of noise in the reconstructed image of 2D Gaussian image and the high-resolution images can be obtained by using the compensation process.

Resolution Enhanced Computational Integral Imaging Reconstruction by Using Boundary Folding Mirrors

  • Piao, Yongri;Xing, Luyan;Zhang, Miao;Lee, Min-Chul
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.363-367
    • /
    • 2016
  • In this paper, we present a resolution-enhanced computational integral imaging reconstruction method by using boundary folding mirrors. In the proposed method, to improve the resolution of the computationally reconstructed 3D images, the direct and reflected light information of the 3D objects through a lenslet array with boundary folding mirrors is recorded as a combined elemental image array. Then, the ray tracing method is employed to synthesize the regular elemental image array by using a combined elemental image array. From the experimental results, we can verify that the proposed method can improve the visual quality of the computationally reconstructed 3D images.

3D Reconstruction Algorithm using Stereo Matching and the Marching Cubes with Intermediate Iso-surface (스테레오 정합과 중간 등위면 마칭큐브를 이용한 3차원 재구성)

  • Cho In Je;Chai Young Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.3
    • /
    • pp.173-180
    • /
    • 2005
  • This paper proposes an effective algorithm that combines both the stereo matching and the marching cube algorithm. By applying the stereo matching technique to an image obtained from various angles, 3D geometry data are acquired, and using the camera extrinsic parameter, the images are combined. After reconstructing the combined data into mesh using the image index, the normal vector equivalent to each point is obtained and the mesh smoothing is processed. This paper describes the successive processes and techniques on the 3D mesh reconstruction, and by proposing the intermediate iso- surface algorithm. Therefore it improves the 3D data instability problem caused when using the conventional marching cube algorithm.

Comparison of 3D Reconstruction Image and Medical Photograph of Neck Tumors (경부 종물에서 3차원 재건 영상과 적출 조직 사진의 비교)

  • Yoo, Young-Sam
    • Korean Journal of Head & Neck Oncology
    • /
    • v.26 no.2
    • /
    • pp.198-203
    • /
    • 2010
  • Objectives : Getting full information from axial CT images needs experiences and knowledge. Sagittal and coronal images could give more information but we have to draw 3-dimensional images in mind with above informations. With aid of 3D reconstruction softwares, CT data are converted to visible 3D images. We tried to compare medical photographs of 15 surgical specimens from neck tumors with 3D reconstructed images of same patients. Material and Methods : Fifteen patients with neck tumors treated surgically were recruited. Medical photograph of the surgical specimens were collected for comparison. 3D reconstruction of neck CT from same patients with aid of 3D-doctor software gave 3D images of neck masses. Width and height of tumors of each photos and images from the same cases were calculated and compared statistically. Visual similarities were rated between photos and 3D images. Results : No statatistical difference were found in size between medical photos and 3D images. Visual similarity score were higher between 2 groups of images. Conclusion : 3D reconstructed images of neck mass looked alike the real photographs of excised neck mass with similar calculated sizes. It could give us reliable visual information about the mass.

Computational integral imaging reconstruction of 3D object using a depth conversion technique

  • Tan, Chun-Wei;Shin, Dong-Hak;Lee, Byung-Gook;Kim, Eun-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.730-733
    • /
    • 2008
  • In this paper, a novel CII method using a depth conversion technique is proposed. The proposed method can move a far 3D object near lenslet array and reduce the computation cost dramatically. To show the usefulness of the proposed method, we carry out the preliminary experiment and its results are presented.

  • PDF

Three-dimensional QR Code Using Integral Imaging (집적 영상을 활용한 3차원 QR code)

  • Kim, Youngjun;Cho, Ki-Ok;Han, Jaeseung;Cho, Myungjin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2363-2369
    • /
    • 2016
  • In this paper, we propose three-dimensional (3D) quick-response (QR) code generation technique using passive 3D integral imaging and computational integral imaging reconstruction technique. In our proposed method, we divide 2D QR code into 4 planes with different reconstruction depths and then we generate 3D QR code using synthetic aperture integral imaging and computational reconstruction. In this 3D QR code generation process, we use integral imaging which is one of 3D imaging technologies. Finally, 3D QR code can be scanned by reconstructing and merging 3D QR codes at 4 different planes with computational reconstruction. Therefore, the security level for QR code scanning may be enhanced when QR code is scanned. To show that our proposed method can improve the security level for QR code scanning, in this paper, we carry out the optical experiments and computational reconstruction. In addition, we show that 3D QR code can be scanned when reconstruction depths are known.

Advanced Methods in Dynamic Contrast Enhanced Arterial Phase Imaging of the Liver

  • Kim, Yoon-Chul
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.1
    • /
    • pp.1-16
    • /
    • 2019
  • Dynamic contrast enhanced (DCE) magnetic resonance (MR) imaging plays an important role in non-invasive detection and characterization of primary and metastatic lesions in the liver. Recently, efforts have been made to improve spatial and temporal resolution of DCE liver MRI for arterial phase imaging. Review of recent publications related to arterial phase imaging of the liver indicates that there exist primarily two approaches: breath-hold and free-breathing. For breath-hold imaging, acquiring multiple arterial phase images in a breath-hold is the preferred approach over conventional single-phase imaging. For free-breathing imaging, a combination of three-dimensional (3D) stack-of-stars golden-angle sampling and compressed sensing parallel imaging reconstruction is one of emerging techniques. Self-gating can be used to decrease respiratory motion artifact. This article introduces recent MRI technologies relevant to hepatic arterial phase imaging, including differential subsampling with Cartesian ordering (DISCO), golden-angle radial sparse parallel (GRASP), and X-D GRASP. This article also describes techniques related to dynamic 3D image reconstruction of the liver from golden-angle stack-of-stars data.

Hard calibration of a structured light for the Euclidian reconstruction (3차원 복원을 위한 구조적 조명 보정방법)

  • 신동조;양성우;김재희
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.183-186
    • /
    • 2003
  • A vision sensor should be calibrated prior to infer a Euclidian shape reconstruction. A point to point calibration. also referred to as a hard calibration, estimates calibration parameters by means of a set of 3D to 2D point pairs. We proposed a new method for determining a set of 3D to 2D pairs for the structured light hard calibration. It is simply determined based on epipolar geometry between camera image plane and projector plane, and a projector calibrating grid pattern. The projector calibration is divided two stages; world 3D data acquisition Stage and corresponding 2D data acquisition stage. After 3D data points are derived using cross ratio, corresponding 2D point in the projector plane can be determined by the fundamental matrix and horizontal grid ID of a projector calibrating pattern. Euclidian reconstruction can be achieved by linear triangulation. and experimental results from simulation are presented.

  • PDF

Quantitative Assessment of 3D Reconstruction Procedure Using Stereo Matching (스테레오 정합을 이용한 3차원 재구성 과정의 정량적 평가)

  • Woo, Dong-Min
    • Journal of IKEEE
    • /
    • v.17 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • The quantitative evaluation of DEM(Digital Elevation Map) is very important to the assessment of the effectiveness for the applied 3D image analysis technique. This paper presents a new quantitative evaluation method of 3D reconstruction process by using synthetic images. The proposed method is based on the assumption that a preacquired DEM and ortho-image should be the pseudo ground truth. The proposed evaluation process begins by generating a pair of photo-realistic synthetic images of the terrain from any viewpoint in terms of application of the constructed ray tracing algorithm to the pseudo ground truth. By comparing the DEM obtained by a pair of photo-realistic synthetic images with the assumed pseudo ground truth, we can analyze the quantitative error in DEM and evaluate the effectiveness of the applied 3D analysis method. To verify the effectiveness of the proposed evaluation method, we carry out the quantitative and the qualitative experiments. For the quantitative experiment, we prove the accuracy of the photo-realistic synthetic image. Also, the proposed evaluation method is experimented on the 3D reconstruction with regards to the change of the matching window. Based on the fact that the experimental result agrees with the anticipation, we can qualitatively manifest the effectiveness of the proposed evaluation method.